Bliman Pierre-Alexandre, Aronna M Soledad, Coelho Flávio C, da Silva Moacyr A H B
Escola de Matemática Aplicada, Fundação Getulio Vargas, Praia de Botafogo 190, Rio de Janeiro, RJ, 22250-900, Brazil.
Sorbonne Universités, Inria, UPMC Univ. Paris 06, Lab. J.-L. Lions UMR CNRS 7598, Paris, France.
J Math Biol. 2018 Apr;76(5):1269-1300. doi: 10.1007/s00285-017-1174-x. Epub 2017 Aug 30.
The control of the spread of dengue fever by introduction of the intracellular parasitic bacterium Wolbachia in populations of the vector Aedes aegypti, is presently one of the most promising tools for eliminating dengue, in the absence of an efficient vaccine. The success of this operation requires locally careful planning to determine the adequate number of individuals carrying the Wolbachia parasite that need to be introduced into the natural population. The introduced mosquitoes are expected to eventually replace the Wolbachia-free population and guarantee permanent protection against the transmission of dengue to human. In this study, we propose and analyze a model describing the fundamental aspects of the competition between mosquitoes carrying Wolbachia and mosquitoes free of the parasite. We then use feedback control techniques to devise an introduction protocol that is proved to guarantee that the population converges to a stable equilibrium where the totality of mosquitoes carry Wolbachia.
在缺乏有效疫苗的情况下,通过在病媒埃及伊蚊种群中引入细胞内寄生细菌沃尔巴克氏体来控制登革热传播,目前是消除登革热最有前景的工具之一。该行动的成功需要在当地进行仔细规划,以确定需要引入自然种群的携带沃尔巴克氏体寄生虫的个体的适当数量。预计引入的蚊子最终将取代无沃尔巴克氏体的种群,并确保对登革热传播给人类的永久保护。在本研究中,我们提出并分析了一个模型,该模型描述了携带沃尔巴克氏体的蚊子与无寄生虫的蚊子之间竞争的基本方面。然后,我们使用反馈控制技术设计了一种引入方案,该方案被证明可确保种群收敛到一个稳定的平衡点,此时所有蚊子都携带沃尔巴克氏体。