Suppr超能文献

存在多种失效类型时纵向测量与生存数据的联合模型。

A joint model for longitudinal measurements and survival data in the presence of multiple failure types.

作者信息

Elashoff Robert M, Li Gang, Li Ning

机构信息

Department of Biostatistics, School of Public Health, University of California at Los Angeles, Los Angeles, California 90095, U.S.A.

Department of Biomathematics, University of California at Los Angeles, 10833 Leconte Avenue, Box 951766, Los Angeles, California 90095-1766, U.S.A.

出版信息

Biometrics. 2008 Sep;64(3):762-771. doi: 10.1111/j.1541-0420.2007.00952.x. Epub 2007 Dec 20.

Abstract

In this article we study a joint model for longitudinal measurements and competing risks survival data. Our joint model provides a flexible approach to handle possible nonignorable missing data in the longitudinal measurements due to dropout. It is also an extension of previous joint models with a single failure type, offering a possible way to model informatively censored events as a competing risk. Our model consists of a linear mixed effects submodel for the longitudinal outcome and a proportional cause-specific hazards frailty submodel (Prentice et al., 1978, Biometrics 34, 541-554) for the competing risks survival data, linked together by some latent random effects. We propose to obtain the maximum likelihood estimates of the parameters by an expectation maximization (EM) algorithm and estimate their standard errors using a profile likelihood method. The developed method works well in our simulation studies and is applied to a clinical trial for the scleroderma lung disease.

摘要

在本文中,我们研究了一种用于纵向测量和竞争风险生存数据的联合模型。我们的联合模型提供了一种灵活的方法来处理纵向测量中由于失访而可能出现的不可忽略的缺失数据。它也是先前具有单一失效类型的联合模型的扩展,为将信息性删失事件建模为竞争风险提供了一种可能的方法。我们的模型由一个用于纵向结果的线性混合效应子模型和一个用于竞争风险生存数据的比例特定病因风险脆弱性子模型(Prentice等人,1978年,《生物统计学》34卷,541 - 554页)组成,通过一些潜在随机效应联系在一起。我们建议通过期望最大化(EM)算法获得参数的最大似然估计,并使用轮廓似然方法估计其标准误差。所开发的方法在我们的模拟研究中效果良好,并应用于硬皮病肺病的一项临床试验。

相似文献

1
A joint model for longitudinal measurements and survival data in the presence of multiple failure types.
Biometrics. 2008 Sep;64(3):762-771. doi: 10.1111/j.1541-0420.2007.00952.x. Epub 2007 Dec 20.
8
Joint modeling of survival time and longitudinal outcomes with flexible random effects.
Lifetime Data Anal. 2018 Jan;24(1):126-152. doi: 10.1007/s10985-017-9405-4. Epub 2017 Aug 30.
9
An issue of identifying longitudinal biomarkers for competing risks data with masked causes of failure considering frailties model.
Stat Methods Med Res. 2020 Feb;29(2):603-616. doi: 10.1177/0962280219842352. Epub 2019 Apr 16.
10
Longitudinal data analysis with non-ignorable missing data.
Stat Methods Med Res. 2016 Feb;25(1):205-20. doi: 10.1177/0962280212448721. Epub 2012 May 24.

引用本文的文献

4
Accounting for Competing Events When Evaluating Long-Term Outcomes in Survivors of Critical Illness.
Am J Respir Crit Care Med. 2023 Dec 1;208(11):1158-1165. doi: 10.1164/rccm.202305-0790CP.
5
Dynamic risk score modeling for multiple longitudinal risk factors and survival.
Comput Stat Data Anal. 2024 Jan;189. doi: 10.1016/j.csda.2023.107837. Epub 2023 Aug 30.
6
Joint Modeling of Longitudinal Outcome and Competing Risks: Application to HIV/AIDS Data.
J Res Health Sci. 2023 Mar;23(1):e00571. doi: 10.34172/jrhs.2023.106.
9
Modeling the underlying biological processes in Alzheimer's disease using a multivariate competing risk joint model.
Stat Med. 2022 Jul 30;41(17):3421-3433. doi: 10.1002/sim.9425. Epub 2022 May 18.
10
Bayesian Joint Modeling of Multivariate Longitudinal and Survival Data With an Application to Diabetes Study.
Front Big Data. 2022 Apr 27;5:812725. doi: 10.3389/fdata.2022.812725. eCollection 2022.

本文引用的文献

1
Cyclophosphamide versus placebo in scleroderma lung disease.
N Engl J Med. 2006 Jun 22;354(25):2655-66. doi: 10.1056/NEJMoa055120.
3
Individualized predictions of disease progression following radiation therapy for prostate cancer.
J Clin Oncol. 2005 Feb 1;23(4):816-25. doi: 10.1200/JCO.2005.12.156.
4
Latent pattern mixture models for informative intermittent missing data in longitudinal studies.
Biometrics. 2004 Jun;60(2):295-305. doi: 10.1111/j.0006-341X.2004.00173.x.
5
Joint modelling of longitudinal measurements and event time data.
Biostatistics. 2000 Dec;1(4):465-80. doi: 10.1093/biostatistics/1.4.465.
6
A Bayesian semiparametric joint hierarchical model for longitudinal and survival data.
Biometrics. 2003 Jun;59(2):221-8. doi: 10.1111/1541-0420.00028.
8
A semiparametric likelihood approach to joint modeling of longitudinal and time-to-event data.
Biometrics. 2002 Dec;58(4):742-53. doi: 10.1111/j.0006-341x.2002.00742.x.
10
Model-based approaches to analysing incomplete longitudinal and failure time data.
Stat Med. 1997;16(1-3):259-72. doi: 10.1002/(sici)1097-0258(19970215)16:3<259::aid-sim484>3.0.co;2-s.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验