Elashoff Robert M, Li Gang, Li Ning
Department of Biostatistics, School of Public Health, University of California at Los Angeles, Los Angeles, California 90095, U.S.A.
Department of Biomathematics, University of California at Los Angeles, 10833 Leconte Avenue, Box 951766, Los Angeles, California 90095-1766, U.S.A.
Biometrics. 2008 Sep;64(3):762-771. doi: 10.1111/j.1541-0420.2007.00952.x. Epub 2007 Dec 20.
In this article we study a joint model for longitudinal measurements and competing risks survival data. Our joint model provides a flexible approach to handle possible nonignorable missing data in the longitudinal measurements due to dropout. It is also an extension of previous joint models with a single failure type, offering a possible way to model informatively censored events as a competing risk. Our model consists of a linear mixed effects submodel for the longitudinal outcome and a proportional cause-specific hazards frailty submodel (Prentice et al., 1978, Biometrics 34, 541-554) for the competing risks survival data, linked together by some latent random effects. We propose to obtain the maximum likelihood estimates of the parameters by an expectation maximization (EM) algorithm and estimate their standard errors using a profile likelihood method. The developed method works well in our simulation studies and is applied to a clinical trial for the scleroderma lung disease.
在本文中,我们研究了一种用于纵向测量和竞争风险生存数据的联合模型。我们的联合模型提供了一种灵活的方法来处理纵向测量中由于失访而可能出现的不可忽略的缺失数据。它也是先前具有单一失效类型的联合模型的扩展,为将信息性删失事件建模为竞争风险提供了一种可能的方法。我们的模型由一个用于纵向结果的线性混合效应子模型和一个用于竞争风险生存数据的比例特定病因风险脆弱性子模型(Prentice等人,1978年,《生物统计学》34卷,541 - 554页)组成,通过一些潜在随机效应联系在一起。我们建议通过期望最大化(EM)算法获得参数的最大似然估计,并使用轮廓似然方法估计其标准误差。所开发的方法在我们的模拟研究中效果良好,并应用于硬皮病肺病的一项临床试验。