Suppr超能文献

人类在视觉觅食过程中如何对不断变化的奖励做出反应。

How humans react to changing rewards during visual foraging.

作者信息

Zhang Jinxia, Gong Xue, Fougnie Daryl, Wolfe Jeremy M

机构信息

Key Laboratory of Measurement and Control of CSE, Ministry of Education, School of Automation, Southeast University, Nanjing, Jiangsu, 210096, China.

Visual Attention Laboratory, Brigham and Women's Hospital, Cambridge, MA, 02139, USA.

出版信息

Atten Percept Psychophys. 2017 Nov;79(8):2299-2309. doi: 10.3758/s13414-017-1411-9.

Abstract

Much is known about the speed and accuracy of search in single-target search tasks, but less attention has been devoted to understanding search in multiple-target foraging tasks. These tasks raise and answer important questions about how individuals decide to terminate searches in cases in which the number of targets in each display is unknown. Even when asked to find every target, individuals quit before exhaustively searching a display. Because a failure to notice targets can have profound effects (e.g., missing a malignant tumor in an X-ray), it is important to develop strategies that could limit such errors. Here, we explored the impact of different reward patterns on these failures. In the Neutral condition, reward for finding a target was constant over time. In the Increasing condition, reward increased for each successive target in a display, penalizing early departure from a display. In the Decreasing condition, reward decreased for each successive target in a display. The experimental results demonstrate that observers will forage for longer (and find more targets) when the value of successive targets increases (and the opposite when value decreases). The data indicate that observers were learning to utilize knowledge of the reward pattern and to forage optimally over the course of the experiment. Simulation results further revealed that human behavior could be modeled with a variant of Charnov's Marginal Value Theorem (MVT) (Charnov, 1976) that includes roles for reward and learning.

摘要

我们对单目标搜索任务中的搜索速度和准确性了解很多,但对多目标觅食任务中的搜索理解较少。这些任务提出并回答了关于个体在每个展示中目标数量未知的情况下如何决定终止搜索的重要问题。即使被要求找到每一个目标,个体在彻底搜索完一个展示之前就会停止。由于未能注意到目标可能会产生深远影响(例如,在X光片中遗漏恶性肿瘤),因此制定能够减少此类错误的策略非常重要。在这里,我们探讨了不同奖励模式对这些失误的影响。在中性条件下,找到目标的奖励随时间保持不变。在递增条件下,展示中每找到一个连续的目标奖励就会增加,惩罚过早离开展示。在递减条件下,展示中每找到一个连续的目标奖励就会减少。实验结果表明,当连续目标的价值增加时,观察者会觅食更长时间(并找到更多目标)(当价值降低时则相反)。数据表明,观察者在实验过程中正在学习利用奖励模式的知识并进行最优觅食。模拟结果进一步表明,人类行为可以用查诺夫的边际价值定理(MVT)(查诺夫,1976)的一个变体来建模,该变体包括奖励和学习的作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验