Suppr超能文献

使用惯性传感器自动检测和分割帕金森病患者的日常生活活动。

Using Inertial Sensors to Automatically Detect and Segment Activities of Daily Living in People With Parkinson's Disease.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2018 Jan;26(1):197-204. doi: 10.1109/TNSRE.2017.2745418. Epub 2017 Aug 25.

Abstract

Wearable sensors such as inertial measurement units (IMUs) have been widely used to measure the quantity of physical activities during daily living in healthy and people with movement disorders through activity classification. These sensors have the potential to provide valuable information to evaluate the quality of the movement during the activities of daily living (ADL), such as walking, sitting down, and standing up, which could help clinicians to monitor rehabilitation and pharmaceutical interventions. However, high accuracy in the detection and segmentation of these activities is necessary for proper evaluation of the quality of the performance within a given segment. This paper presents algorithms to process IMU data, to detect and segment unstructured ADL in people with Parkinson's disease (PD) in simulated free-living environment. The proposed method enabled the detection of 1610 events of ADL performed by nine community dwelling older adults with PD under simulated free-living environment with 90% accuracy (sensitivity = 90.8%, specificity = 97.8%) while segmenting these activities within 350 ms of the "gold-standard" manual segmentation. These results demonstrate the robustness of the proposed method to eventually be used to automatically detect and segment ADL in free-living environment in people with PD. This could potentially lead to a more expeditious evaluation of the quality of the movement and administration of proper corrective care for patients who are under physical rehabilitation and pharmaceutical intervention for movement disorders.

摘要

可穿戴传感器,如惯性测量单元(IMU),已被广泛用于通过活动分类来测量健康人群和运动障碍人群日常生活中的身体活动量。这些传感器有可能提供有价值的信息来评估日常生活活动(ADL)期间的运动质量,如行走、坐下和站立,这可以帮助临床医生监测康复和药物干预效果。然而,为了正确评估给定时间段内的运动表现质量,对这些活动的检测和分割需要高精度。本文提出了处理 IMU 数据的算法,以在模拟的自由生活环境中检测和分割帕金森病(PD)患者的非结构化 ADL。该方法能够以 90%的准确率(灵敏度=90.8%,特异性=97.8%)检测到 9 名居住在社区的 PD 老年患者在模拟的自由生活环境中进行的 1610 次 ADL 事件,同时在 350 毫秒内将这些活动分割为“金标准”手动分割。这些结果证明了所提出的方法具有很强的鲁棒性,最终可以用于自动检测和分割 PD 患者在自由生活环境中的 ADL。这可能会导致更迅速地评估运动质量,并为正在接受物理康复和药物干预治疗运动障碍的患者提供适当的矫正护理。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验