Lab. of Stem Cell & Neurobiology, Department of Oral Anatomy, Dental Research Institute and School of Dentistry, Seoul National University, Seoul, 03080, Republic of Korea.
Center for Neuroscience and Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.
Sci Rep. 2017 Aug 31;7(1):10166. doi: 10.1038/s41598-017-10394-y.
Cellular reprogramming using small molecules (SMs) without genetic modification provides a promising strategy for generating target cells for cell-based therapy. Human adipose-derived stem cells (hADSCs) are a desirable cell source for clinical application due to their self-renewal capacity, easy obtainability and the lack of safety concerns, such as tumor formation. However, methods to convert hADSCs into neural cells, such as neural stem cells (NSCs), are inefficient, and few if any studies have achieved efficient reprogramming of hADSCs into functional neurons. Here, we developed highly efficient induction protocols to generate NSC-like cells (iNSCs), neuron-like cells (iNs) and GABAergic neuron-like cells (iGNs) from hADSCs via SM-mediated inhibition of SMAD signaling without genetic manipulation. All induced cells adopted morphological, molecular and functional features of their bona fide counterparts. Electrophysiological data demonstrated that iNs and iGNs exhibited electrophysiological properties of neurons and formed neural networks in vitro. Microarray analysis further confirmed that iNSCs and iGNs underwent lineage switch toward a neural fate. Together, these studies provide rapid, reproducible and robust protocols for efficient generation of functional iNSCs, iNs and iGNs from hADSCs, which have utility for modeling disease pathophysiology and providing cell-therapy sources of neurological disorders.
使用小分子(SMs)进行细胞重编程而不进行基因修饰,为生成基于细胞的治疗的靶细胞提供了一种很有前途的策略。人脂肪来源干细胞(hADSCs)由于其自我更新能力、易于获取以及缺乏肿瘤形成等安全问题,是临床应用的理想细胞来源。然而,将 hADSCs 转化为神经细胞(如神经干细胞(NSCs))的方法效率不高,很少有研究能够有效地将 hADSCs 重编程为功能性神经元。在这里,我们开发了高效的诱导方案,通过 SMAD 信号通路的 SM 介导抑制,无需遗传操作,从 hADSCs 中生成 NSC 样细胞(iNSCs)、神经元样细胞(iNs)和 GABA 能神经元样细胞(iGNs)。所有诱导的细胞均采用形态学、分子和功能特征与其真正对应物相似的特征。电生理数据表明,iNs 和 iGNs 表现出神经元的电生理特性,并在体外形成神经网络。微阵列分析进一步证实,iNSCs 和 iGNs 经历了向神经命运的谱系转换。总之,这些研究为从 hADSCs 中快速、可重复和稳健地生成功能性 iNSCs、iNs 和 iGNs 提供了方案,这对于模拟疾病发病机制和为神经紊乱提供细胞治疗来源具有实用价值。