Cignetti Fabien, Chabeauti Pierre-Yves, Menant Jasmine, Anton Jean-Luc J J, Schmitz Christina, Vaugoyeau Marianne, Assaiante Christine
Aix-Marseille Université, CNRS, LNC, Laboratoire de Neurosciences CognitivesMarseille, France.
Aix-Marseille Université, CNRS, Fédération 3CMarseille, France.
Front Psychol. 2017 Aug 17;8:1396. doi: 10.3389/fpsyg.2017.01396. eCollection 2017.
The present study investigated the cortical areas engaged in the perception of graviceptive information embedded in biological motion (BM). To this end, functional magnetic resonance imaging was used to assess the cortical areas active during the observation of human movements performed under normogravity and microgravity (parabolic flight). Movements were defined by motion cues alone using point-light displays. We found that gravity modulated the activation of a restricted set of regions of the network subtending BM perception, including form-from-motion areas of the visual system (kinetic occipital region, lingual gyrus, cuneus) and motor-related areas (primary motor and somatosensory cortices). These findings suggest that compliance of observed movements with normal gravity was carried out by mapping them onto the observer's motor system and by extracting their overall form from local motion of the moving light points. We propose that judgment on graviceptive information embedded in BM can be established based on motor resonance and visual familiarity mechanisms and not necessarily by accessing the internal model of gravitational motion stored in the vestibular cortex.
本研究调查了参与感知生物运动(BM)中重力感知信息的皮层区域。为此,使用功能磁共振成像来评估在正常重力和微重力(抛物线飞行)条件下观察人类运动时活跃的皮层区域。运动仅通过使用点光显示的运动线索来定义。我们发现,重力调节了支持BM感知的网络中一组受限区域的激活,包括视觉系统的运动形状区域(枕叶运动区、舌回、楔叶)和运动相关区域(初级运动皮层和躯体感觉皮层)。这些发现表明,通过将观察到的运动映射到观察者的运动系统,并从移动光点的局部运动中提取其整体形状,来实现观察到的运动与正常重力的匹配。我们提出,基于运动共振和视觉熟悉机制,而不一定通过访问存储在前庭皮层中的重力运动内部模型,就可以对BM中嵌入的重力感知信息进行判断。