Laboratoire de Physiologie de la Perception et de l'Action, CNRS, Collège de France, Paris 75005, France.
J Neurosci. 2012 Feb 8;32(6):1969-73. doi: 10.1523/JNEUROSCI.3886-11.2012.
Humans are known to regulate the timing of interceptive actions by modeling, in a simplified way, Newtonian mechanics. Specifically, when intercepting an approaching ball, humans trigger their movements a bit earlier when the target arrives from above than from below. This bias occurs regardless of the ball's true kinetics, and thus appears to reflect an a priori expectation that a downward moving object will accelerate. We postulate that gravito-inertial information is used to tune visuomotor responses to match the target's most likely acceleration. Here we used the peculiar conditions of parabolic flight--where gravity's effects change every 20 s--to test this hypothesis. We found a striking reversal in the timing of interceptive responses performed in weightlessness compared with trials performed on ground, indicating a role of gravity sensing in the tuning of this response. Parallels between these observations and the properties of otolith receptors suggest that vestibular signals themselves might plausibly provide the critical input. Thus, in addition to its acknowledged importance for postural control, gaze stabilization, and spatial navigation, we propose that detecting the direction of gravity's pull plays a role in coordinating quick reactions intended to intercept a fast-moving visual target.
人类通过以简化的方式模拟牛顿力学来调节拦截动作的时机。具体来说,当拦截一个靠近的球时,当目标从上方到达而不是从下方到达时,人类会稍微提前触发他们的动作。这种偏差与球的真实动力学无关,因此似乎反映了一种先验的期望,即向下移动的物体将加速。我们假设引力惯性信息被用来调整视动反应,以匹配目标最可能的加速度。在这里,我们利用抛物线飞行的特殊条件——重力的影响每 20 秒变化一次——来检验这一假设。我们发现,在失重状态下进行的拦截反应的时间与在地面上进行的试验相比有明显的逆转,这表明重力感测在这种反应的调整中起作用。这些观察结果与耳石受体特性之间的相似之处表明,前庭信号本身可能提供了关键的输入。因此,除了其在姿势控制、凝视稳定和空间导航方面的公认重要性之外,我们还提出,检测重力拉力的方向在协调旨在拦截快速移动视觉目标的快速反应中发挥作用。