Suppr超能文献

连四硫酸盐和元素硫塑造了酸性矿山排水中硫酸盐的同位素组成。

Tetrathionate and Elemental Sulfur Shape the Isotope Composition of Sulfate in Acid Mine Drainage.

作者信息

Balci Nurgul, Brunner Benjamin, Turchyn Alexandra V

机构信息

Geomicrobiolog-Biogeochemistry Lab, Department of Geological Engineering, Istanbul Technical UniversityIstanbul, Turkey.

Department of Biogeochemistry, Max Planck Institute for Marine MicrobiologyBremen, Germany.

出版信息

Front Microbiol. 2017 Aug 17;8:1564. doi: 10.3389/fmicb.2017.01564. eCollection 2017.

Abstract

Sulfur compounds in intermediate valence states, for example elemental sulfur, thiosulfate, and tetrathionate, are important players in the biogeochemical sulfur cycle. However, key understanding about the pathways of oxidation involving mixed-valance state sulfur species is still missing. Here we report the sulfur and oxygen isotope fractionation effects during the oxidation of tetrathionate (SO) and elemental sulfur (S°) to sulfate in bacterial cultures in acidic conditions. Oxidation of tetrathionate by produced thiosulfate, elemental sulfur and sulfate. Up to 34% of the tetrathionate consumed by the bacteria could not be accounted for in sulfate or other intermediate-valence state sulfur species over the experiments. The oxidation of tetrathionate yielded sulfate that was initially enriched in S (εS) by +7.9‰, followed by a decrease to +1.4‰ over the experiment duration, with an average εS of +3.5 ± 0.2‰ after a month of incubation. We attribute this significant sulfur isotope fractionation to enzymatic disproportionation reactions occurring during tetrathionate decomposition, and to the incomplete transformation of tetrathionate into sulfate. The oxygen isotope composition of sulfate (δO) from the tetrathionate oxidation experiments indicate that 62% of the oxygen in the formed sulfate was derived from water. The remaining 38% of the oxygen was either inherited from the supplied tetrathionate, or supplied from dissolved atmospheric oxygen (O). During the oxidation of elemental sulfur, the product sulfate became depleted in S between -1.8 and 0‰ relative to the elemental sulfur with an average for εS of -0.9 ± 0.2‰ and all the oxygen atoms in the sulfate derived from water with an average normal oxygen isotope fractionation (εO) of -4.4‰. The differences observed in δO and the sulfur isotope composition of sulfate (δS), acid production, and mixed valence state sulfur species generated by the oxidation of the two different substrates suggests a metabolic flexibility in response to sulfur substrate availability. Our results demonstrate that microbial processing of mixed-valence-state sulfur species generates a significant sulfur isotope fractionation in acidic environments and oxidation of mixed-valence state sulfur species may produce sulfate with characteristic sulfur and oxygen isotope signatures. Elemental sulfur and tetrathionate are not only intermediate-valence state sulfur compounds that play a central role in sulfur oxidation pathways, but also key factors in shaping these isotope patterns.

摘要

中等价态的硫化合物,例如元素硫、硫代硫酸盐和连四硫酸盐,是生物地球化学硫循环中的重要参与者。然而,关于涉及混合价态硫物种的氧化途径的关键认识仍然缺失。在此,我们报告了在酸性条件下细菌培养物中连四硫酸盐(SO)和元素硫(S°)氧化为硫酸盐过程中的硫和氧同位素分馏效应。细菌氧化连四硫酸盐产生了硫代硫酸盐、元素硫和硫酸盐。在整个实验过程中,细菌消耗的连四硫酸盐中高达34%无法在硫酸盐或其他中等价态硫物种中得到解释。连四硫酸盐的氧化产生的硫酸盐最初在硫(εS)上富集了+7.9‰,随后在实验过程中降至+1.4‰,孵育一个月后平均εS为+3.5±0.2‰。我们将这种显著的硫同位素分馏归因于连四硫酸盐分解过程中发生的酶促歧化反应,以及连四硫酸盐向硫酸盐的不完全转化。连四硫酸盐氧化实验中硫酸盐的氧同位素组成(δO)表明,形成的硫酸盐中62%的氧来自水。其余38%的氧要么继承自所提供的连四硫酸盐,要么来自溶解的大气氧(O)。在元素硫氧化过程中,产物硫酸盐相对于元素硫在硫上贫化了-1.8至0‰,εS平均值为-0.9±0.2‰,并且硫酸盐中的所有氧原子均来自水,平均正常氧同位素分馏(εO)为-4.4‰。两种不同底物氧化产生的δO和硫酸盐的硫同位素组成(δS)、产酸以及混合价态硫物种的差异表明,微生物对硫底物可用性具有代谢灵活性。我们的结果表明,混合价态硫物种的微生物处理在酸性环境中产生了显著的硫同位素分馏,并且混合价态硫物种的氧化可能产生具有特征性硫和氧同位素特征的硫酸盐。元素硫和连四硫酸盐不仅是在硫氧化途径中起核心作用的中等价态硫化合物,也是塑造这些同位素模式的关键因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be18/5562728/7711f98cbed8/fmicb-08-01564-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验