Institute of Technical Biocatalysis, Hamburg University of Technology, Denickestr. 15, Hamburg 21073, Germany.
Institute of Thermal Separation Processes, Hamburg University of Technology, Hamburg, Germany.
Biotechnol J. 2017 Dec;12(12). doi: 10.1002/biot.201700332. Epub 2017 Sep 25.
A variety of strategies is applied to alleviate thermodynamic and kinetic limitations in biocatalytic carboxylation of metabolites in vivo. A key feature to consider in enzymatic carboxylations is the nature of the cosubstrate: CO or its hydrated form, bicarbonate. The substrate binding and activation mechanism determine what the actual carboxylation agent is. Dihydroxybenzoic acid (de)carboxylases catalyze the reversible regio-selective ortho-(de)carboxylation of phenolics. These enzymes have attracted considerable attention in the last 10 years due to their potential in substituting harsh conditions typical of chemical carboxylations (100-200 °C, 5-100 bar) with, ideally, greener ones (20-40 °C, 1 bar). They are reported to use bicarbonate as substrate, needed in large excess to overcome thermodynamic and kinetic limitations. Therefore, CO can be used as substrate by these enzymes only if it is converted into bicarbonate in situ. In this contribution, we report the simultaneous amine-mediated conversion of CO into bicarbonate and the ortho-carboxylation of different phenolic molecules catalyzed by 2,3-dihydroxybenzoic acid (de)carboxylase from Aspergillus oryzae. Our results show that under the newly developed conditions a significant thermodynamic (up to twofold increase in conversion) and kinetic improvement (up to approx. fivefold increase in rate) of the biocatalytic carboxylation of catechol is achieved.
多种策略被应用于缓解生物催化代谢物羧化反应中的热力学和动力学限制。在酶促羧化反应中,需要考虑的一个关键特征是共底物的性质:CO 或其水合形式,碳酸氢盐。底物结合和激活机制决定了实际的羧化剂是什么。二羟基苯甲酸(去)羧化酶催化酚类化合物的可逆区域选择性邻位(去)羧化。由于这些酶在替代典型的化学羧化苛刻条件(100-200°C,5-100 巴)方面具有潜力,因此在过去 10 年中引起了相当大的关注,理想情况下使用更环保的条件(20-40°C,1 巴)。据报道,它们使用碳酸氢盐作为底物,需要大量过量才能克服热力学和动力学限制。因此,只有当 CO 在原位转化为碳酸氢盐时,这些酶才能将 CO 用作底物。在本研究中,我们报告了同时由米曲霉来源的 2,3-二羟基苯甲酸(去)羧化酶介导的 CO 向碳酸氢盐的转化以及不同酚类分子的邻位羧化反应。我们的结果表明,在新开发的条件下,儿茶酚的生物催化羧化反应在热力学(转化率提高了两倍)和动力学(速率提高了约五倍)方面都有显著改善。