Kong Dehan, Ibrahim Joseph G, Lee Eunjee, Zhu Hongtu
Department of Statistical Sciences, University of Toronto, Ontario, Canada.
Department of Biostatistics, University of North Carolina at Chapel Hill, North Carolina, U.S.A.
Biometrics. 2018 Mar;74(1):109-117. doi: 10.1111/biom.12748. Epub 2017 Sep 1.
We consider a functional linear Cox regression model for characterizing the association between time-to-event data and a set of functional and scalar predictors. The functional linear Cox regression model incorporates a functional principal component analysis for modeling the functional predictors and a high-dimensional Cox regression model to characterize the joint effects of both functional and scalar predictors on the time-to-event data. We develop an algorithm to calculate the maximum approximate partial likelihood estimates of unknown finite and infinite dimensional parameters. We also systematically investigate the rate of convergence of the maximum approximate partial likelihood estimates and a score test statistic for testing the nullity of the slope function associated with the functional predictors. We demonstrate our estimation and testing procedures by using simulations and the analysis of the Alzheimer's Disease Neuroimaging Initiative (ADNI) data. Our real data analyses show that high-dimensional hippocampus surface data may be an important marker for predicting time to conversion to Alzheimer's disease. Data used in the preparation of this article were obtained from the ADNI database (adni.loni.usc.edu).
我们考虑一个功能线性Cox回归模型,用于刻画事件发生时间数据与一组功能型和标量预测变量之间的关联。功能线性Cox回归模型纳入了功能主成分分析来对功能型预测变量进行建模,并采用高维Cox回归模型来刻画功能型和标量预测变量对事件发生时间数据的联合效应。我们开发了一种算法来计算未知有限维和无限维参数的最大近似偏似然估计。我们还系统地研究了最大近似偏似然估计的收敛速度以及用于检验与功能型预测变量相关的斜率函数是否为零的得分检验统计量。我们通过模拟以及对阿尔茨海默病神经影像学倡议(ADNI)数据的分析来展示我们的估计和检验程序。我们的实际数据分析表明,高维海马体表面数据可能是预测转化为阿尔茨海默病时间的一个重要标志物。本文编写过程中使用的数据来自ADNI数据库(adni.loni.usc.edu)。