Suppr超能文献

FLCRM:功能线性Cox回归模型。

FLCRM: Functional linear cox regression model.

作者信息

Kong Dehan, Ibrahim Joseph G, Lee Eunjee, Zhu Hongtu

机构信息

Department of Statistical Sciences, University of Toronto, Ontario, Canada.

Department of Biostatistics, University of North Carolina at Chapel Hill, North Carolina, U.S.A.

出版信息

Biometrics. 2018 Mar;74(1):109-117. doi: 10.1111/biom.12748. Epub 2017 Sep 1.

Abstract

We consider a functional linear Cox regression model for characterizing the association between time-to-event data and a set of functional and scalar predictors. The functional linear Cox regression model incorporates a functional principal component analysis for modeling the functional predictors and a high-dimensional Cox regression model to characterize the joint effects of both functional and scalar predictors on the time-to-event data. We develop an algorithm to calculate the maximum approximate partial likelihood estimates of unknown finite and infinite dimensional parameters. We also systematically investigate the rate of convergence of the maximum approximate partial likelihood estimates and a score test statistic for testing the nullity of the slope function associated with the functional predictors. We demonstrate our estimation and testing procedures by using simulations and the analysis of the Alzheimer's Disease Neuroimaging Initiative (ADNI) data. Our real data analyses show that high-dimensional hippocampus surface data may be an important marker for predicting time to conversion to Alzheimer's disease. Data used in the preparation of this article were obtained from the ADNI database (adni.loni.usc.edu).

摘要

我们考虑一个功能线性Cox回归模型,用于刻画事件发生时间数据与一组功能型和标量预测变量之间的关联。功能线性Cox回归模型纳入了功能主成分分析来对功能型预测变量进行建模,并采用高维Cox回归模型来刻画功能型和标量预测变量对事件发生时间数据的联合效应。我们开发了一种算法来计算未知有限维和无限维参数的最大近似偏似然估计。我们还系统地研究了最大近似偏似然估计的收敛速度以及用于检验与功能型预测变量相关的斜率函数是否为零的得分检验统计量。我们通过模拟以及对阿尔茨海默病神经影像学倡议(ADNI)数据的分析来展示我们的估计和检验程序。我们的实际数据分析表明,高维海马体表面数据可能是预测转化为阿尔茨海默病时间的一个重要标志物。本文编写过程中使用的数据来自ADNI数据库(adni.loni.usc.edu)。

相似文献

1
FLCRM: Functional linear cox regression model.
Biometrics. 2018 Mar;74(1):109-117. doi: 10.1111/biom.12748. Epub 2017 Sep 1.
2
Weighted functional linear Cox regression model.
Stat Methods Med Res. 2021 Aug;30(8):1917-1931. doi: 10.1177/09622802211012015. Epub 2021 Jul 4.
3
Asynchronous functional linear regression models for longitudinal data in reproducing kernel Hilbert space.
Biometrics. 2023 Sep;79(3):1880-1895. doi: 10.1111/biom.13767. Epub 2022 Oct 17.
5
Functional joint model for longitudinal and time-to-event data: an application to Alzheimer's disease.
Stat Med. 2017 Sep 30;36(22):3560-3572. doi: 10.1002/sim.7381. Epub 2017 Jun 30.
6
Analysis of longitudinal diffusion-weighted images in healthy and pathological aging: An ADNI study.
J Neurosci Methods. 2017 Feb 15;278:101-115. doi: 10.1016/j.jneumeth.2016.12.020. Epub 2017 Jan 3.
8
Analysis of secondary phenotypes in multigroup association studies.
Biometrics. 2020 Jun;76(2):606-618. doi: 10.1111/biom.13157. Epub 2019 Nov 11.
9
Functional survival forests for multivariate longitudinal outcomes: Dynamic prediction of Alzheimer's disease progression.
Stat Methods Med Res. 2021 Jan;30(1):99-111. doi: 10.1177/0962280220941532. Epub 2020 Jul 29.
10
Dynamic predictions in Bayesian functional joint models for longitudinal and time-to-event data: An application to Alzheimer's disease.
Stat Methods Med Res. 2019 Feb;28(2):327-342. doi: 10.1177/0962280217722177. Epub 2017 Jul 28.

引用本文的文献

1
DYNAMIC PREDICTION WITH MULTIVARIATE LONGITUDINAL OUTCOMES AND LONGITUDINAL MAGNETIC RESONANCE IMAGING DATA.
Ann Appl Stat. 2025 Mar;19(1):505-528. doi: 10.1214/24-aoas1970. Epub 2025 Mar 17.
2
Bayesian Estimation of Partial Functional Tobit Censored Quantile Regression Model.
Stat Med. 2025 Jun;44(13-14):e70152. doi: 10.1002/sim.70152.
3
Nonparametric Statistical Inference via Metric Distribution Function in Metric Spaces.
J Am Stat Assoc. 2024;119(548):2772-2784. doi: 10.1080/01621459.2023.2277417. Epub 2023 Dec 26.
5
Recurrent event analysis in the presence of real-time high frequency data via random subsampling.
J Comput Graph Stat. 2024;33(2):525-537. doi: 10.1080/10618600.2023.2276114. Epub 2023 Dec 15.
6
Neural network on interval-censored data with application to the prediction of Alzheimer's disease.
Biometrics. 2023 Sep;79(3):2677-2690. doi: 10.1111/biom.13734. Epub 2022 Sep 1.
7
Additive Functional Cox Model.
J Comput Graph Stat. 2021;30(3):780-793. doi: 10.1080/10618600.2020.1853550. Epub 2021 Jan 1.
8
Shape Analysis of Functional Data With Elastic Partial Matching.
IEEE Trans Pattern Anal Mach Intell. 2022 Dec;44(12):9589-9602. doi: 10.1109/TPAMI.2021.3130535. Epub 2022 Nov 7.
9
Predicting the onset of breast cancer using mammogram imaging data with irregular boundary.
Biostatistics. 2023 Apr 14;24(2):358-371. doi: 10.1093/biostatistics/kxab032.
10
Multi-Band Brain Network Analysis for Functional Neuroimaging Biomarker Identification.
IEEE Trans Med Imaging. 2021 Dec;40(12):3843-3855. doi: 10.1109/TMI.2021.3099641. Epub 2021 Nov 30.

本文引用的文献

1
Classical Testing in Functional Linear Models.
J Nonparametr Stat. 2016;28(4):813-838. doi: 10.1080/10485252.2016.1231806. Epub 2016 Aug 20.
3
Cox Regression Models with Functional Covariates for Survival Data.
Stat Modelling. 2015 Jun 1;15(3):256-278. doi: 10.1177/1471082X14565526. Epub 2015 Jan 9.
4
Variation in Variables that Predict Progression from MCI to AD Dementia over Duration of Follow-up.
Am J Alzheimers Dis (Columbia). 2013;2(1):12-28. doi: 10.7726/ajad.2013.1002.
7
ORACLE INEQUALITIES FOR THE LASSO IN THE COX MODEL.
Ann Stat. 2013 Jun 1;41(3):1142-1165. doi: 10.1214/13-AOS1098.
8
Kernel machine approach to testing the significance of multiple genetic markers for risk prediction.
Biometrics. 2011 Sep;67(3):975-86. doi: 10.1111/j.1541-0420.2010.01544.x. Epub 2011 Jan 31.
9
Generalized Functional Linear Models with Semiparametric Single-Index Interactions.
J Am Stat Assoc. 2010 Jun 1;105(490):621-633. doi: 10.1198/jasa.2010.tm09313.
10
On Consistency and Sparsity for Principal Components Analysis in High Dimensions.
J Am Stat Assoc. 2009 Jun 1;104(486):682-693. doi: 10.1198/jasa.2009.0121.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验