Suppr超能文献

加性函数Cox模型

Additive Functional Cox Model.

作者信息

Cui Erjia, Crainiceanu Ciprian M, Leroux Andrew

机构信息

Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, USA.

Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, USA; Department of Biostatistics and Bioinformatics, University of Colorado, Anschutz Medical Campus, USA.

出版信息

J Comput Graph Stat. 2021;30(3):780-793. doi: 10.1080/10618600.2020.1853550. Epub 2021 Jan 1.

Abstract

We propose the Additive Functional Cox Model to flexibly quantify the association between functional covariates and time to event data. The model extends the linear functional proportional hazards model by allowing the association between the functional covariate and log hazard to vary non-linearly in both the functional domain and the value of the functional covariate. Additionally, we introduce critical transformations of the functional covariate which address the weak model identifiability in areas of information sparsity and discuss their impact on interpretation and inference. We also introduce a novel estimation procedure that accounts for identifiability constraints directly during model fitting. Methods are applied to the National Health and Nutrition Examination Survey (NHANES) 2003-2006 accelerometry data and quantify new and interpretable circadian patterns of physical activity that are associated with all-cause mortality. We also introduce a simple and novel simulation framework for generating survival data with functional predictors which resemble the observed data. The accompanying inferential R software is fast, open source and publicly available. Our data application and simulations are fully reproducible through the accompanying vignette.

摘要

我们提出了加性函数Cox模型,以灵活地量化函数协变量与事件发生时间数据之间的关联。该模型扩展了线性函数比例风险模型,允许函数协变量与对数风险之间的关联在函数域和函数协变量的值中呈非线性变化。此外,我们引入了函数协变量的关键变换,解决了信息稀疏区域中模型可识别性较弱的问题,并讨论了它们对解释和推断的影响。我们还引入了一种新颖的估计程序,在模型拟合过程中直接考虑可识别性约束。方法应用于2003 - 2006年美国国家健康与营养检查调查(NHANES)的加速度计数据,并量化了与全因死亡率相关的新的且可解释的身体活动昼夜模式。我们还引入了一个简单新颖的模拟框架,用于生成具有类似于观测数据的函数预测变量的生存数据。随附的用于推断的R软件快速、开源且可公开获取。通过随附的 vignette,我们的数据应用和模拟是完全可重现的。

相似文献

1
Additive Functional Cox Model.加性函数Cox模型
J Comput Graph Stat. 2021;30(3):780-793. doi: 10.1080/10618600.2020.1853550. Epub 2021 Jan 1.
5
On doubly robust estimation of the hazard difference.关于风险差异的双重稳健估计。
Biometrics. 2019 Mar;75(1):100-109. doi: 10.1111/biom.12943. Epub 2018 Aug 22.
6
Maximum likelihood estimation in the additive hazards model.加法风险模型中的最大似然估计。
Biometrics. 2023 Sep;79(3):1646-1656. doi: 10.1111/biom.13764. Epub 2022 Nov 16.
9
A semiparametric risk score for physical activity.体力活动的半参数风险评分。
Stat Med. 2022 Mar 30;41(7):1191-1204. doi: 10.1002/sim.9262. Epub 2021 Nov 21.

引用本文的文献

1
Quantile index predictors using R package hyper.gam.使用R包hyper.gam的分位数指数预测器。
Bioinformatics. 2025 Aug 2;41(8). doi: 10.1093/bioinformatics/btaf430.
4
Walking fingerprinting.行走指纹识别
J R Stat Soc Ser C Appl Stat. 2024 Jul 29;73(5):1221-1241. doi: 10.1093/jrsssc/qlae033. eCollection 2024 Nov.
8
Fast Multilevel Functional Principal Component Analysis.快速多级功能主成分分析
J Comput Graph Stat. 2023;32(2):366-377. doi: 10.1080/10618600.2022.2115500. Epub 2022 Oct 7.
9
Quantile Index Biomarkers Based on Single-Cell Expression Data.基于单细胞表达数据的分位数指数生物标志物。
Lab Invest. 2023 Aug;103(8):100158. doi: 10.1016/j.labinv.2023.100158. Epub 2023 Apr 22.

本文引用的文献

3
FLCRM: Functional linear cox regression model.FLCRM:功能线性Cox回归模型。
Biometrics. 2018 Mar;74(1):109-117. doi: 10.1111/biom.12748. Epub 2017 Sep 1.
10
Fast Covariance Estimation for High-dimensional Functional Data.高维函数型数据的快速协方差估计
Stat Comput. 2016 Jan 1;26(1):409-421. doi: 10.1007/s11222-014-9485-x. Epub 2014 Jun 27.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验