Bryner Darshan, Srivastava Anuj
IEEE Trans Pattern Anal Mach Intell. 2022 Dec;44(12):9589-9602. doi: 10.1109/TPAMI.2021.3130535. Epub 2022 Nov 7.
Elastic Riemannian metrics have been used successfully for statistical treatments of functional and curve shape data. However, this usage suffers from a significant restriction: the function boundaries are assumed to be fixed and matched. In practice, functional data often comes with unmatched boundaries. It happens, for example, in dynamical systems with variable evolution rates, such as COVID-19 infection rate curves associated with different geographical regions. Here, we develop a Riemannian framework that allows for partial matching, comparing, and clustering of functions with phase variability and uncertain boundaries. We extend past work by (1) Defining a new diffeomorphism group G over the positive reals that is the semidirect product of a time-warping group and a time-scaling group; (2) Introducing a metric that is invariant to the action of G; (3) Imposing a Riemannian Lie group structure on G to allow for an efficient gradient-based optimization for elastic partial matching; and (4) Presenting a modification that, while losing the metric property, allows one to control the amount of boundary disparity in the registration. We illustrate this framework by registering and clustering shapes of COVID-19 rate curves, identifying basic patterns, minimizing mismatch errors, and reducing variability within clusters compared to previous methods.
弹性黎曼度量已成功用于对函数和曲线形状数据进行统计处理。然而,这种用法存在一个重大限制:假设函数边界是固定且匹配的。在实际中,函数数据常常具有不匹配的边界。例如,在具有可变演化速率的动态系统中就会出现这种情况,比如与不同地理区域相关的新冠病毒感染率曲线。在此,我们开发了一个黎曼框架,该框架允许对具有相位变异性和不确定边界的函数进行部分匹配、比较和聚类。我们通过以下方式扩展了以往的工作:(1)在正实数上定义一个新的微分同胚群(G),它是时间扭曲群和时间缩放群的半直积;(2)引入一种对(G)的作用不变的度量;(3)在(G)上施加黎曼李群结构,以便为弹性部分匹配进行基于梯度的高效优化;(4)提出一种修改方法,该方法虽然失去了度量性质,但能让人们在配准中控制边界差异的量。我们通过对新冠病毒感染率曲线的形状进行配准和聚类、识别基本模式、最小化失配误差以及与先前方法相比减少聚类内的变异性,来说明这个框架。