Suppr超能文献

基于弹性局部匹配的函数型数据形状分析

Shape Analysis of Functional Data With Elastic Partial Matching.

作者信息

Bryner Darshan, Srivastava Anuj

出版信息

IEEE Trans Pattern Anal Mach Intell. 2022 Dec;44(12):9589-9602. doi: 10.1109/TPAMI.2021.3130535. Epub 2022 Nov 7.

Abstract

Elastic Riemannian metrics have been used successfully for statistical treatments of functional and curve shape data. However, this usage suffers from a significant restriction: the function boundaries are assumed to be fixed and matched. In practice, functional data often comes with unmatched boundaries. It happens, for example, in dynamical systems with variable evolution rates, such as COVID-19 infection rate curves associated with different geographical regions. Here, we develop a Riemannian framework that allows for partial matching, comparing, and clustering of functions with phase variability and uncertain boundaries. We extend past work by (1) Defining a new diffeomorphism group G over the positive reals that is the semidirect product of a time-warping group and a time-scaling group; (2) Introducing a metric that is invariant to the action of G; (3) Imposing a Riemannian Lie group structure on G to allow for an efficient gradient-based optimization for elastic partial matching; and (4) Presenting a modification that, while losing the metric property, allows one to control the amount of boundary disparity in the registration. We illustrate this framework by registering and clustering shapes of COVID-19 rate curves, identifying basic patterns, minimizing mismatch errors, and reducing variability within clusters compared to previous methods.

摘要

弹性黎曼度量已成功用于对函数和曲线形状数据进行统计处理。然而,这种用法存在一个重大限制:假设函数边界是固定且匹配的。在实际中,函数数据常常具有不匹配的边界。例如,在具有可变演化速率的动态系统中就会出现这种情况,比如与不同地理区域相关的新冠病毒感染率曲线。在此,我们开发了一个黎曼框架,该框架允许对具有相位变异性和不确定边界的函数进行部分匹配、比较和聚类。我们通过以下方式扩展了以往的工作:(1)在正实数上定义一个新的微分同胚群(G),它是时间扭曲群和时间缩放群的半直积;(2)引入一种对(G)的作用不变的度量;(3)在(G)上施加黎曼李群结构,以便为弹性部分匹配进行基于梯度的高效优化;(4)提出一种修改方法,该方法虽然失去了度量性质,但能让人们在配准中控制边界差异的量。我们通过对新冠病毒感染率曲线的形状进行配准和聚类、识别基本模式、最小化失配误差以及与先前方法相比减少聚类内的变异性,来说明这个框架。

相似文献

1
Shape Analysis of Functional Data With Elastic Partial Matching.基于弹性局部匹配的函数型数据形状分析
IEEE Trans Pattern Anal Mach Intell. 2022 Dec;44(12):9589-9602. doi: 10.1109/TPAMI.2021.3130535. Epub 2022 Nov 7.
3
A Novel Representation for Riemannian Analysis of Elastic Curves in ℝ.实数空间中弹性曲线的黎曼分析的一种新表示法。
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2007 Jul 16;2007(17-22 June 2007):1-7. doi: 10.1109/CVPR.2007.383185.
4
Elastic analysis of irregularly or sparsely sampled curves.不规则或稀疏采样曲线的弹性分析。
Biometrics. 2023 Sep;79(3):2103-2115. doi: 10.1111/biom.13706. Epub 2022 Jul 4.
5
Elastic statistical analysis of interval-valued time series.区间值时间序列的弹性统计分析
J Appl Stat. 2021 Sep 24;50(1):60-85. doi: 10.1080/02664763.2021.1981257. eCollection 2023.
7
Elastic Functional Coding of Riemannian Trajectories.黎曼轨迹的弹性功能编码。
IEEE Trans Pattern Anal Mach Intell. 2017 May;39(5):922-936. doi: 10.1109/TPAMI.2016.2564409. Epub 2016 May 6.
9
IDiff: irrotational diffeomorphisms for computational anatomy.IDiff:用于计算解剖学的无旋微分同胚
Inf Process Med Imaging. 2013;23:754-65. doi: 10.1007/978-3-642-38868-2_63.
10
Diffeomorphic Sulcal Shape Analysis for Cortical Surface Registration.用于皮质表面配准的微分同胚脑沟形状分析
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2010 Jun 1;13-18 June:475-482. doi: 10.1109/CVPR.2010.5540177.

引用本文的文献

1
Topo-Geometric Analysis of Variability in Point Clouds Using Persistence Landscapes.使用持久景观对点云变异性进行拓扑几何分析。
IEEE Trans Pattern Anal Mach Intell. 2024 Dec;46(12):11035-11046. doi: 10.1109/TPAMI.2024.3451328. Epub 2024 Nov 6.

本文引用的文献

1
FLCRM: Functional linear cox regression model.FLCRM:功能线性Cox回归模型。
Biometrics. 2018 Mar;74(1):109-117. doi: 10.1111/biom.12748. Epub 2017 Sep 1.
2
Elastic Functional Coding of Riemannian Trajectories.黎曼轨迹的弹性功能编码。
IEEE Trans Pattern Anal Mach Intell. 2017 May;39(5):922-936. doi: 10.1109/TPAMI.2016.2564409. Epub 2016 May 6.
4
Shape Analysis of Elastic Curves in Euclidean Spaces.欧几里得空间中弹性曲线的形状分析。
IEEE Trans Pattern Anal Mach Intell. 2011 Jul;33(7):1415-28. doi: 10.1109/TPAMI.2010.184. Epub 2010 Oct 14.
5
Rate-invariant recognition of humans and their activities.人类及其活动的速率不变识别。
IEEE Trans Image Process. 2009 Jun;18(6):1326-39. doi: 10.1109/TIP.2009.2017143. Epub 2009 Apr 24.
6
Recognition of shapes by editing their shock graphs.通过编辑形状的冲击图来识别形状。
IEEE Trans Pattern Anal Mach Intell. 2004 May;26(5):550-71. doi: 10.1109/TPAMI.2004.1273924.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验