Suppr超能文献

Cox模型中套索回归的Oracle不等式

ORACLE INEQUALITIES FOR THE LASSO IN THE COX MODEL.

作者信息

Huang Jian, Sun Tingni, Ying Zhiliang, Yu Yi, Zhang Cun-Hui

机构信息

University of Iowa.

出版信息

Ann Stat. 2013 Jun 1;41(3):1142-1165. doi: 10.1214/13-AOS1098.

Abstract

We study the absolute penalized maximum partial likelihood estimator in sparse, high-dimensional Cox proportional hazards regression models where the number of time-dependent covariates can be larger than the sample size. We establish oracle inequalities based on natural extensions of the compatibility and cone invertibility factors of the Hessian matrix at the true regression coefficients. Similar results based on an extension of the restricted eigenvalue can be also proved by our method. However, the presented oracle inequalities are sharper since the compatibility and cone invertibility factors are always greater than the corresponding restricted eigenvalue. In the Cox regression model, the Hessian matrix is based on time-dependent covariates in censored risk sets, so that the compatibility and cone invertibility factors, and the restricted eigenvalue as well, are random variables even when they are evaluated for the Hessian at the true regression coefficients. Under mild conditions, we prove that these quantities are bounded from below by positive constants for time-dependent covariates, including cases where the number of covariates is of greater order than the sample size. Consequently, the compatibility and cone invertibility factors can be treated as positive constants in our oracle inequalities.

摘要

我们研究稀疏、高维Cox比例风险回归模型中的绝对惩罚最大偏似然估计量,其中随时间变化的协变量数量可能大于样本量。我们基于真实回归系数处海森矩阵的相容性和锥可逆性因子的自然扩展建立了似然比不等式。基于受限特征值扩展的类似结果也可以通过我们的方法证明。然而,所给出的似然比不等式更尖锐,因为相容性和锥可逆性因子总是大于相应的受限特征值。在Cox回归模型中,海森矩阵基于删失风险集中随时间变化的协变量,因此即使在真实回归系数处对海森矩阵进行评估时,相容性和锥可逆性因子以及受限特征值也是随机变量。在温和条件下,我们证明对于随时间变化的协变量,这些量由正的常数从下方界定,包括协变量数量比样本量高阶的情况。因此,在我们的似然比不等式中,相容性和锥可逆性因子可以被视为正的常数。

相似文献

1
ORACLE INEQUALITIES FOR THE LASSO IN THE COX MODEL.Cox模型中套索回归的Oracle不等式
Ann Stat. 2013 Jun 1;41(3):1142-1165. doi: 10.1214/13-AOS1098.
2
The lasso for high dimensional regression with a possible change point.具有可能变化点的高维回归套索法
J R Stat Soc Series B Stat Methodol. 2016 Jan;78(1):193-210. doi: 10.1111/rssb.12108. Epub 2015 Feb 15.
4
Penalized Empirical Likelihood for the Sparse Cox Regression Model.稀疏Cox回归模型的惩罚经验似然法
J Stat Plan Inference. 2019 Jul;201:71-85. doi: 10.1016/j.jspi.2018.12.001. Epub 2018 Dec 15.
6
On the robustness of the adaptive lasso to model misspecification.关于自适应套索对模型误设的稳健性。
Biometrika. 2012 Sep;99(3):717-731. doi: 10.1093/biomet/ass027. Epub 2012 Jul 11.

引用本文的文献

1
Gene-environment interaction analysis under the Cox model.Cox模型下的基因-环境相互作用分析。
Ann Inst Stat Math. 2023 Dec;75(6):931-948. doi: 10.1007/s10463-023-00871-9. Epub 2023 Apr 10.
3
Testing and Confidence Intervals for High Dimensional Proportional Hazards Model.高维比例风险模型的检验与置信区间
J R Stat Soc Series B Stat Methodol. 2017 Nov;79(5):1415-1437. doi: 10.1111/rssb.12224. Epub 2016 Dec 26.
9
Flexible and Interpretable Models for Survival Data.生存数据的灵活且可解释模型
J Comput Graph Stat. 2019;28(4):954-966. doi: 10.1080/10618600.2019.1592758. Epub 2019 May 20.
10
Feature screening in ultrahigh-dimensional varying-coefficient Cox model.超高维变系数Cox模型中的特征筛选
J Multivar Anal. 2019 May;171:284-297. doi: 10.1016/j.jmva.2018.12.009. Epub 2018 Dec 28.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验