Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston , Houston, Texas 77030, United States.
Department of Physics, Birzeit University , Birzeit, West Bank, Palestine.
J Am Chem Soc. 2017 Sep 27;139(38):13466-13475. doi: 10.1021/jacs.7b06292. Epub 2017 Sep 18.
Self-assembly of plasma membrane-associated Ras GTPases has major implications to the regulation of cell signaling. However, the structural basis of homo-oligomerization and the fractional distribution of oligomeric states remained undetermined. We have addressed these issues by deciphering the distribution of dimers and higher-order oligomers of K-Ras4B, the most frequently mutated Ras isoform in human cancers. We focused on the constitutively active G12V K-Ras and two of its variants, K101E and K101C/E107C, which respectively destabilize and stabilize oligomers. Using raster image correlation spectroscopy and number and brightness analysis combined with fluorescence recovery after photobleaching, fluorescence correlation spectroscopy and electron microscopy in live cells, we show that G12V K-Ras exists as a mixture of monomers, dimers and larger oligomers, while the K101E mutant is predominantly monomeric and K101C/E107C is dominated by oligomers. This observation demonstrates the ability of K-Ras to exist in multiple oligomeric states whose population can be altered by interfacial mutations. Using molecular modeling and simulations we further show that K-Ras uses two partially overlapping interfaces to form compositionally and topologically diverse oligomers. Our results thus provide the first detailed insight into the multiplicity, structure, and membrane organization of K-Ras homomers.
质膜相关 Ras GTPases 的自组装对细胞信号转导的调节具有重要意义。然而,同型寡聚体的形成和寡聚态的分数分布的结构基础仍未确定。我们通过解析 K-Ras4B(人类癌症中最常发生突变的 Ras 同工型)的二聚体和更高阶寡聚体的分布来解决这些问题。我们集中研究了组成型激活的 G12V K-Ras 及其两个变体 K101E 和 K101C/E107C,它们分别使寡聚体不稳定和稳定。我们使用光栅图像相关光谱学和数量和亮度分析结合光漂白后荧光恢复、荧光相关光谱学和电子显微镜在活细胞中,我们表明 G12V K-Ras 以单体、二聚体和更大的寡聚体的混合物形式存在,而 K101E 突变体主要是单体,K101C/E107C 则主要是寡聚体。这一观察结果表明 K-Ras 能够存在于多种寡聚态中,其种群可以通过界面突变来改变。通过分子建模和模拟,我们进一步表明 K-Ras 使用两个部分重叠的界面来形成组成和拓扑多样化的寡聚体。因此,我们的研究结果首次详细揭示了 K-Ras 同源寡聚物的多样性、结构和膜组织。