Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA; The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, 1515 Holcombe Blvd., Houston, TX 77030, USA.
Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA.
Neoplasia. 2017 Oct;19(10):762-771. doi: 10.1016/j.neo.2017.07.004. Epub 2017 Aug 30.
Peripheral blood chronic lymphocytic leukemia (CLL) cells are replicationally quiescent mature B-cells. In short-term cultures, supporting stromal cells provide a survival advantage to CLL cells by inducing transcription and translation without promoting proliferation. We hypothesized that the stromal microenvironment augments malignant B cells' metabolism to enable the cells to cope with their energy demands for transcription and translation. We used extracellular flux analysis to assess the two major energy-generating pathways, mitochondrial oxidative phosphorylation (OxPhos) and glycolysis, in primary CLL cells in the presence of three different stromal cell lines. OxPhos, measured as the basal oxygen consumption rate (OCR) and maximum respiration capacity, was significantly higher in 28 patients' CLL cells cocultured with bone marrow-derived NK.Tert stromal cells than in CLL cells cultured alone (P = .004 and <.0001, respectively). Similar OCR induction was observed in CLL cells cocultured with M2-10B4 and HS-5 stromal lines. In contrast, heterogeneous changes in the extracellular acidification rate (a measure of glycolysis) were observed in CLL cells cocultured with stromal cells. Ingenuity Pathway Analysis of CLL cells' metabolomics profile indicated stroma-mediated stimulation of nucleotide synthesis. Quantitation of ribonucleotide pools showed a significant two-fold increase in CLL cells cocultured with stromal cells, indicating that the stroma may induce CLL cellular bioenergy and the RNA building blocks necessary for the transcriptional requirement of a prosurvival phenotype. The stroma did not impact the proliferation index (Ki-67 staining) of CLL cells. Collectively, these data suggest that short-term interaction (≤24 hours) with stroma increases OxPhos and bioenergy in replicationally quiescent CLL cells.
外周血慢性淋巴细胞白血病(CLL)细胞是复制静止的成熟 B 细胞。在短期培养中,支持性基质细胞通过诱导转录和翻译而不促进增殖,为 CLL 细胞提供生存优势。我们假设基质微环境增强恶性 B 细胞的代谢,使细胞能够应对转录和翻译的能量需求。我们使用细胞外通量分析来评估三种不同基质细胞系存在时原代 CLL 细胞的两种主要能量产生途径,线粒体氧化磷酸化(OxPhos)和糖酵解。与单独培养的 CLL 细胞相比,与骨髓来源的 NK.Tert 基质细胞共培养的 28 例患者的 CLL 细胞的 OxPhos(以基础耗氧量(OCR)和最大呼吸能力衡量)显着升高(分别为 P =.004 和<.0001)。在与 M2-10B4 和 HS-5 基质系共培养的 CLL 细胞中也观察到类似的 OCR 诱导。相比之下,与基质细胞共培养的 CLL 细胞的细胞外酸化率(糖酵解的一种衡量标准)发生了异质性变化。CLL 细胞代谢组学特征的 IPA 分析表明基质介导的核苷酸合成刺激。核苷酸池的定量表明与基质共培养的 CLL 细胞的核糖核苷酸池显着增加了两倍,表明基质可能诱导 CLL 细胞的生物能和转录所需的 RNA 构建块生存表型。基质对 CLL 细胞的增殖指数(Ki-67 染色)没有影响。总的来说,这些数据表明,与基质的短期相互作用(≤24 小时)会增加复制静止的 CLL 细胞中的 OxPhos 和生物能。