Suppr超能文献

基于重复症状评分的精神疾病精准医疗方法。

A precision medicine approach for psychiatric disease based on repeated symptom scores.

机构信息

Johns Hopkins University School of Medicine, Department of Medicine, Division of General Internal Medicine, Baltimore, MD, USA.

Johns Hopkins Bloomberg School of Public Health, Department of Mental Health, Baltimore, MD, USA; National Centre for Register-Based Research, Department of Economics and Business Economics, Aarhus University, Aarhus, Denmark.

出版信息

J Psychiatr Res. 2017 Dec;95:147-155. doi: 10.1016/j.jpsychires.2017.08.008. Epub 2017 Aug 11.

Abstract

For psychiatric diseases, rich information exists in the serial measurement of mental health symptom scores. We present a precision medicine framework for using the trajectories of multiple symptoms to make personalized predictions about future symptoms and related psychiatric events. Our approach fits a Bayesian hierarchical model that estimates a population-average trajectory for all symptoms and individual deviations from the average trajectory, then fits a second model that uses individual symptom trajectories to estimate the risk of experiencing an event. The fitted models are used to make clinically relevant predictions for new individuals. We demonstrate this approach on data from a study of antipsychotic therapy for schizophrenia, predicting future scores for positive, negative, and general symptoms, and the risk of treatment failure in 522 schizophrenic patients with observations over 8 weeks. While precision medicine has focused largely on genetic and molecular data, the complementary approach we present illustrates that innovative analytic methods for existing data can extend its reach more broadly. The systematic use of repeated measurements of psychiatric symptoms offers the promise of precision medicine in the field of mental health.

摘要

对于精神疾病,心理健康症状评分的连续测量中存在丰富的信息。我们提出了一个精准医疗框架,用于利用多种症状的轨迹来对未来症状和相关精神疾病事件进行个性化预测。我们的方法适合贝叶斯层次模型,该模型估计所有症状的人群平均轨迹以及个体与平均轨迹的偏差,然后拟合第二个模型,该模型使用个体症状轨迹来估计经历事件的风险。拟合的模型用于为新个体进行临床相关的预测。我们在一项针对精神分裂症抗精神病药物治疗的研究数据上展示了这种方法,预测了 522 名精神分裂症患者在 8 周观察期内的阳性、阴性和一般症状的未来评分,以及治疗失败的风险。虽然精准医疗主要集中在遗传和分子数据上,但我们提出的互补方法表明,针对现有数据的创新分析方法可以更广泛地扩展其应用范围。对精神症状的重复测量的系统使用为精神卫生领域的精准医疗提供了希望。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验