Suppr超能文献

预测心理健康症状和物质使用的学习算法。

A learning algorithm for predicting mental health symptoms and substance use.

机构信息

School of Medicine, Johns Hopkins University, Baltimore, MD, USA.

Johns Hopkins Bloomberg School of Public Health, Department of Epidemiology, Baltimore, MD, USA.

出版信息

J Psychiatr Res. 2021 Feb;134:22-29. doi: 10.1016/j.jpsychires.2020.12.049. Epub 2020 Dec 19.

Abstract

Learning health systems use data to generate knowledge that informs clinical care, but few studies have evaluated how to leverage patient-reported mental health symptoms and substance use data to make patient-specific predictions. We developed a general Bayesian prediction algorithm that uses self-reported psychiatric symptoms and substance use within a population to predict future symptoms and substance use for individuals in that population. We validated our approach in 2444 participants from two clinical cohorts - the National Network of Depression Centers and the Johns Hopkins HIV Clinical Cohort - by predicting symptoms of depression, anxiety, and mania as well as alcohol, heroin, and cocaine use and comparing our predictions to observed symptoms and substance use. When we dichotomized mental health symptoms as moderate-severe vs. none-mild, individual predictions yielded areas under the ROC curve (AUCs) of 0.84 [95% confidence interval 0.80-0.88] and 0.85 [0.82-0.88] for symptoms of depression in the two cohorts, AUCs of 0.84 [0.79-0.88] and 0.85 [0.82-0.88] for symptoms of anxiety, and an AUC of 0.77 [0.72-0.82] for manic symptoms. Predictions of substance use yielded an AUC of 0.92 [0.88-0.97] for heroin use, 0.90 [0.82-0.97] for cocaine use, and 0.90 [0.88-092] for alcohol misuse. This rigorous, mathematically grounded approach could provide patient-specific predictions at the point of care. It can be applied to other psychiatric symptoms and substance use indicators, and is customizable to specific health systems. Such approaches can realize the potential of a learning health system to transform ever-increasing quantities of data into tangible guidance for patient care.

摘要

学习型卫生系统利用数据生成知识,为临床护理提供信息,但很少有研究评估如何利用患者报告的心理健康症状和物质使用数据来进行针对个体患者的预测。我们开发了一种通用的贝叶斯预测算法,该算法利用人群中的自我报告的精神科症状和物质使用情况,来预测该人群中个体未来的症状和物质使用情况。我们通过预测抑郁、焦虑和躁狂的症状以及酒精、海洛因和可卡因的使用情况,并将我们的预测与观察到的症状和物质使用情况进行比较,在来自两个临床队列(国家抑郁中心网络和约翰霍普金斯艾滋病毒临床队列)的 2444 名参与者中验证了我们的方法。当我们将心理健康症状分为中度-重度与无-轻度时,个体预测得出的抑郁症状的 ROC 曲线下面积(AUC)分别为 0.84(95%置信区间为 0.80-0.88)和 0.85(0.82-0.88),两个队列的焦虑症状 AUC 分别为 0.84(0.79-0.88)和 0.85(0.82-0.88),躁狂症状的 AUC 为 0.77(0.72-0.82)。物质使用预测的 AUC 分别为海洛因使用的 0.92(0.88-0.97)、可卡因使用的 0.90(0.82-0.97)和酒精滥用的 0.90(0.88-092)。这种严格的、基于数学的方法可以在护理点提供针对个体患者的预测。它可以应用于其他精神科症状和物质使用指标,并可以根据特定的卫生系统进行定制。这种方法可以实现学习型卫生系统的潜力,将不断增加的数据转化为对患者护理的切实指导。

相似文献

1
A learning algorithm for predicting mental health symptoms and substance use.预测心理健康症状和物质使用的学习算法。
J Psychiatr Res. 2021 Feb;134:22-29. doi: 10.1016/j.jpsychires.2020.12.049. Epub 2020 Dec 19.

本文引用的文献

1
Stan: A Probabilistic Programming Language.斯坦:一种概率编程语言。
J Stat Softw. 2017;76. doi: 10.18637/jss.v076.i01. Epub 2017 Jan 11.
3
Predictive modeling in e-mental health: A common language framework.电子心理健康中的预测建模:一种通用语言框架。
Internet Interv. 2018 Mar 8;12:57-67. doi: 10.1016/j.invent.2018.03.002. eCollection 2018 Jun.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验