Department of Mental Health Law & Policy, Louis de la Parte Florida Mental Health Institute, University of South Florida, Tampa, FL 33612, USA.
Department of Psychiatry, University of Toronto, Toronto, Ontario M5T 1R8, Canada.
Schizophr Res. 2018 Feb;192:131-136. doi: 10.1016/j.schres.2017.05.001. Epub 2017 May 8.
Despite advances in sequencing candidate genes and whole genomes, no method has accurately predicted who will or will not benefit from a specific antipsychotic medication among patients with schizophrenia. We propose a computational algorithm that utilizes a person-centered approach that directly identifies individual patients who will respond to a specific antipsychotic medication. The algorithm was applied to the data obtained from the Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) study. The predictors were either (1) 13 single-nucleotide polymorphisms (SNPs) and 53 baseline variables or (2) 25 SNPs and the same 53 baseline variables, depending on the existing findings and data availability. The outcome variables were either (1) improvement in the Positive and Negative Syndrome Scale (PANSS) (Yes/No) or (2) completion of phase 1/1A (Yes/No). Each of those four predictor-outcome combinations was tried for each of the five antipsychotic medications (Perphenazine, Olanzapine, Quetiapine, Risperidone, and Ziprasidone), leading to 20 prediction experiments. For 18 out of 20 experiments, all three performance measures were greater than 0.50 (sensitivity 0.51-0.79, specificity 0.52-0.79, accuracy 0.52-0.74). Notably, the model provided a promising prediction for Ziprasidone for the case involving completion of phase 1/1A (Yes/No) predicted by 13 SNPs and 53 baseline variables (sensitivity 0.75, specificity 0.74, accuracy 0.74). The proposed algorithm simultaneously used both genetic information and clinical profiles to predict individual patients' response to antipsychotic medications. As the method is not disease-specific but a general algorithm, it can be easily adopted in many other clinical practices for personalized medicine.
尽管在候选基因和全基因组测序方面取得了进展,但没有一种方法能够准确预测精神分裂症患者中哪些人将受益于特定的抗精神病药物,哪些人不会受益。我们提出了一种计算算法,该算法采用以患者为中心的方法,直接识别出对特定抗精神病药物有反应的个体患者。该算法应用于来自临床抗精神病药物干预效果试验(CATIE)的研究数据。预测因子要么是(1)13 个单核苷酸多态性(SNP)和 53 个基线变量,要么是(2)25 个 SNP 和相同的 53 个基线变量,具体取决于现有发现和数据可用性。结果变量要么是(1)阳性和阴性症状量表(PANSS)改善(是/否),要么是(2)完成第 1/1A 阶段(是/否)。这四种预测-结果组合中的每一种都针对五种抗精神病药物(奋乃静、奥氮平、喹硫平、利培酮和齐拉西酮)进行了尝试,共进行了 20 次预测实验。在 20 次实验中的 18 次实验中,所有三个性能指标均大于 0.50(敏感性 0.51-0.79,特异性 0.52-0.79,准确性 0.52-0.74)。值得注意的是,对于涉及完成第 1/1A 阶段(是/否)的齐拉西酮的情况,该模型通过 13 个 SNP 和 53 个基线变量提供了有希望的预测(敏感性 0.75,特异性 0.74,准确性 0.74)。所提出的算法同时使用遗传信息和临床特征来预测个体患者对抗精神病药物的反应。由于该方法不是针对特定疾病的,而是一种通用算法,因此可以很容易地在许多其他临床实践中应用于个性化医疗。