Suppr超能文献

温度依赖的三羧酸循环动态控制提高了大肠杆菌生产衣康酸的体积产率。

Temperature-dependent dynamic control of the TCA cycle increases volumetric productivity of itaconic acid production by Escherichia coli.

机构信息

Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany.

出版信息

Biotechnol Bioeng. 2018 Jan;115(1):156-164. doi: 10.1002/bit.26446. Epub 2017 Oct 6.

Abstract

Based on the recently constructed Escherichia coli itaconic acid production strain ita23, we aimed to improve the productivity by applying a two-stage process strategy with decoupled production of biomass and itaconic acid. We constructed a strain ita32 (MG1655 ΔaceA Δpta ΔpykF ΔpykA pCadCs), which, in contrast to ita23, has an active tricarboxylic acid (TCA) cycle and a fast growth rate of 0.52 hr at 37°C, thus representing an ideal phenotype for the first stage, the growth phase. Subsequently we implemented a synthetic genetic control allowing the downregulation of the TCA cycle and thus the switch from growth to itaconic acid production in the second stage. The promoter of the isocitrate dehydrogenase was replaced by the Lambda promoter (p ) and its expression was controlled by the temperature-sensitive repressor CI857 which is active at lower temperatures (30°C). With glucose as substrate, the respective strain ita36A grew with a fast growth rate at 37°C and switched to production of itaconic acid at 28°C. To study the impact of the process strategy on productivity, we performed one-stage and two-stage bioreactor cultivations. The two-stage process enabled fast formation of biomass resulting in improved peak productivity of 0.86 g/L/hr (+48%) and volumetric productivity of 0.39 g/L/hr (+22%) in comparison to the one-stage process. With our dynamic production strain, we also resolved the glutamate auxotrophy of ita23 and increased the itaconic acid titer to 47 g/L. The temperature-dependent activation of gene expression by the Lambda promoters (p /p ) has been frequently used to improve protein or, in a few cases, metabolite production in two-stage processes. Here we demonstrate that the system can be as well used in the opposite direction to selectively knock-down an essential gene (icd) in E. coli to design a two-stage process for improved volumetric productivity. The control by temperature avoids expensive inducers and has the potential to be generally used to improve cell factory performance.

摘要

基于最近构建的产衣康酸大肠杆菌 ita23 菌株,我们旨在通过应用两段式工艺策略来提高生产力,实现生物量和衣康酸的解耦生产。我们构建了一株 ita32(MG1655ΔaceAΔptaΔpykFΔpykA pCadCs)菌株,与 ita23 相比,该菌株具有活跃的三羧酸(TCA)循环和在 37°C 下 0.52 小时的快速生长速率,因此是第一阶段(生长阶段)的理想表型。随后,我们实施了一种合成遗传控制,允许下调 TCA 循环,从而在第二阶段从生长切换到衣康酸生产。异柠檬酸脱氢酶的启动子被 Lambda 启动子(p)取代,其表达由在较低温度(30°C)下活跃的温度敏感抑制剂 CI857 控制。以葡萄糖为底物,相应的 ita36A 菌株在 37°C 下快速生长,并在 28°C 时切换到衣康酸生产。为了研究工艺策略对生产力的影响,我们进行了单阶段和双阶段生物反应器培养。两段式工艺能够快速形成生物量,与单阶段工艺相比,峰值生产力提高了 48%,达到 0.86 g/L/hr,比体积生产力提高了 22%,达到 0.39 g/L/hr。使用我们的动态生产菌株,我们还解决了 ita23 的谷氨酸营养缺陷,并将衣康酸滴度提高到 47 g/L。Lambda 启动子(p/p)的温度依赖性基因表达激活已被频繁用于提高蛋白质或在少数情况下提高代谢物的产量。在这里,我们证明该系统也可以在相反的方向上使用,选择性地敲除大肠杆菌中的必需基因(icd),以设计提高比体积生产力的两段式工艺。温度控制避免了昂贵的诱导剂,并具有提高细胞工厂性能的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/74a1/5725713/d0e12a78bfdf/BIT-115-156-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验