Department of Information Engineering, University of Padova, Padova, Italy.
Department of Diabetes, King's College London, London, UK.
J Diabetes Sci Technol. 2022 Nov;16(6):1541-1549. doi: 10.1177/19322968211012392. Epub 2021 May 12.
In the management of type 1 diabetes (T1D), systematic and random errors in carb-counting can have an adverse effect on glycemic control. In this study, we performed an in silico trial aiming at quantifying the impact of different levels of carb-counting error on glycemic control.
The T1D patient decision simulator was used to simulate 7-day glycemic profiles of 100 adults using open-loop therapy. The simulation was repeated for different values of systematic and random carb-counting errors, generated with Gaussian distribution varying the error mean from -10% to +10% and standard deviation (SD) from 0% to 50%. The effect of the error was evaluated by computing the difference of time inside (∆TIR), above (∆TAR) and below (∆TBR) the target glycemic range (70-180mg/dl) compared to the reference case, that is, absence of error. Finally, 3 linear regression models were developed to mathematically describe how error mean and SD variations result in ∆TIR, ∆TAR, and ∆TBR changes.
Random errors globally deteriorate the glycemic control; systematic underestimations lead to, on average, up to 5.2% more TAR than the reference case, while systematic overestimation results in up to 0.8% more TBR. The different time in range metrics were linearly related with error mean and SD (>0.95), with slopes of , for ∆TIR, , for ∆TAR, and , for ∆TBR.
The quantification of carb-counting error impact performed in this work may be useful understanding causes of glycemic variability and the impact of possible therapy adjustments or behavior changes in different glucose metrics.
在 1 型糖尿病(T1D)的管理中,碳水化合物计数的系统和随机误差可能对血糖控制产生不利影响。在这项研究中,我们进行了一项计算机模拟试验,旨在量化不同程度的碳水化合物计数误差对血糖控制的影响。
使用 T1D 患者决策模拟器,对 100 名成人进行了 7 天的开环治疗血糖谱模拟。对于不同的系统和随机碳水化合物计数误差值,使用高斯分布重复模拟,误差均值从-10%到+10%,标准差(SD)从 0%到 50%。通过计算目标血糖范围内(70-180mg/dl)的时间差异(∆TIR)、高于(∆TAR)和低于(∆TBR)的时间差异,评估误差的影响与参考案例(即无误差)相比。最后,开发了 3 个线性回归模型,以数学方式描述误差均值和 SD 变化如何导致 ∆TIR、∆TAR 和 ∆TBR 变化。
随机误差普遍降低了血糖控制水平;系统低估导致平均 TAR 比参考案例多 5.2%,而系统高估导致 TBR 多 0.8%。不同的时间范围指标与误差均值和 SD 呈线性相关(>0.95),∆TIR 的斜率为 ,∆TAR 的斜率为 ,∆TBR 的斜率为 。
本研究中进行的碳水化合物计数误差影响的量化可能有助于理解血糖变异性的原因,以及在不同血糖指标下可能的治疗调整或行为变化的影响。