IEEE Trans Vis Comput Graph. 2018 Jan;24(1):667-676. doi: 10.1109/TVCG.2017.2744158. Epub 2017 Aug 29.
Recurrent neural networks, and in particular long short-term memory (LSTM) networks, are a remarkably effective tool for sequence modeling that learn a dense black-box hidden representation of their sequential input. Researchers interested in better understanding these models have studied the changes in hidden state representations over time and noticed some interpretable patterns but also significant noise. In this work, we present LSTMVis, a visual analysis tool for recurrent neural networks with a focus on understanding these hidden state dynamics. The tool allows users to select a hypothesis input range to focus on local state changes, to match these states changes to similar patterns in a large data set, and to align these results with structural annotations from their domain. We show several use cases of the tool for analyzing specific hidden state properties on dataset containing nesting, phrase structure, and chord progressions, and demonstrate how the tool can be used to isolate patterns for further statistical analysis. We characterize the domain, the different stakeholders, and their goals and tasks. Long-term usage data after putting the tool online revealed great interest in the machine learning community.
递归神经网络,特别是长短期记忆 (LSTM) 网络,是一种非常有效的序列建模工具,它可以学习其序列输入的密集黑盒隐藏表示。有兴趣更好地理解这些模型的研究人员已经研究了隐藏状态表示随时间的变化,并注意到了一些可解释的模式,但也存在很大的噪声。在这项工作中,我们提出了 LSTMVis,这是一个用于递归神经网络的可视化分析工具,重点是理解这些隐藏状态动态。该工具允许用户选择一个假设输入范围来关注局部状态变化,将这些状态变化与大数据集中的类似模式进行匹配,并将这些结果与来自其领域的结构注释进行对齐。我们展示了该工具在分析包含嵌套、短语结构和弦进行的数据集的特定隐藏状态属性的几个用例,并演示了如何使用该工具隔离模式以进行进一步的统计分析。我们描述了该领域、不同的利益相关者以及他们的目标和任务。将该工具上线后的长期使用数据显示出机器学习社区的浓厚兴趣。