IEEE Trans Vis Comput Graph. 2018 Jan;24(1):822-831. doi: 10.1109/TVCG.2017.2744321. Epub 2017 Aug 29.
Complex networks require effective tools and visualizations for their analysis and comparison. Clique communities have been recognized as a powerful concept for describing cohesive structures in networks. We propose an approach that extends the computation of clique communities by considering persistent homology, a topological paradigm originally introduced to characterize and compare the global structure of shapes. Our persistence-based algorithm is able to detect clique communities and to keep track of their evolution according to different edge weight thresholds. We use this information to define comparison metrics and a new centrality measure, both reflecting the relevance of the clique communities inherent to the network. Moreover, we propose an interactive visualization tool based on nested graphs that is capable of compactly representing the evolving relationships between communities for different thresholds and clique degrees. We demonstrate the effectiveness of our approach on various network types.
复杂网络需要有效的工具和可视化方法来进行分析和比较。团社区已被认为是描述网络中凝聚结构的强大概念。我们提出了一种方法,通过考虑持久同调(一种拓扑范例,最初用于描述和比较形状的全局结构)来扩展团社区的计算。我们的基于持久性的算法能够检测团社区,并根据不同的边权重阈值跟踪它们的演变。我们使用这些信息来定义比较指标和新的中心度度量,这两个度量都反映了网络中固有的团社区的相关性。此外,我们提出了一种基于嵌套图的交互式可视化工具,能够紧凑地表示不同阈值和团度下社区之间的演化关系。我们在各种网络类型上展示了我们方法的有效性。