Suppr超能文献

用于可视化设计的色差建模。

Modeling Color Difference for Visualization Design.

出版信息

IEEE Trans Vis Comput Graph. 2018 Jan;24(1):392-401. doi: 10.1109/TVCG.2017.2744359. Epub 2017 Aug 29.

Abstract

Color is frequently used to encode values in visualizations. For color encodings to be effective, the mapping between colors and values must preserve important differences in the data. However, most guidelines for effective color choice in visualization are based on either color perceptions measured using large, uniform fields in optimal viewing environments or on qualitative intuitions. These limitations may cause data misinterpretation in visualizations, which frequently use small, elongated marks. Our goal is to develop quantitative metrics to help people use color more effectively in visualizations. We present a series of crowdsourced studies measuring color difference perceptions for three common mark types: points, bars, and lines. Our results indicate that peoples' abilities to perceive color differences varies significantly across mark types. Probabilistic models constructed from the resulting data can provide objective guidance for designers, allowing them to anticipate viewer perceptions in order to inform effective encoding design.

摘要

颜色常用于可视化中的数值编码。为了使颜色编码有效,颜色与数值之间的映射必须保留数据中重要的差异。然而,可视化中有效颜色选择的大多数指南要么基于在最佳观察环境中使用大而均匀的区域测量的颜色感知,要么基于定性直觉。这些限制可能导致可视化中的数据分析错误,因为可视化通常使用小而细长的标记。我们的目标是开发定量指标,以帮助人们在可视化中更有效地使用颜色。我们进行了一系列众包研究,测量了三种常见标记类型(点、条和线)的颜色差异感知。我们的结果表明,人们感知颜色差异的能力在标记类型之间存在显著差异。从所得数据构建的概率模型可以为设计师提供客观的指导,使他们能够预测观众的感知,从而为有效的编码设计提供信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验