Suppr超能文献

色彩与空间结构的关系,用于解释色图数据可视化。

The relation between color and spatial structure for interpreting colormap data visualizations.

机构信息

Department of Psychology, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA.

Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA, USA.

出版信息

J Vis. 2020 Nov 2;20(12):7. doi: 10.1167/jov.20.12.7.

Abstract

Interpreting colormap visualizations requires determining how dimensions of color in visualizations map onto quantities in data. People have color-based biases that influence their interpretations of colormaps, such as a dark-is-more bias-darker colors map to larger quantities. Previous studies of color-based biases focused on colormaps with weak data spatial structure, but color-based biases may not generalize to colormaps with strong data spatial structure, like "hotspots" typically found in weather maps and neuroimaging brain maps. There may be a hotspot-is-more bias to infer that colors within hotspots represent larger quantities, which may override the dark-is-more bias. We tested this possibility in four experiments. Participants saw colormaps with hotspots and a legend that specified the color-quantity mapping. Their task was to indicate which side of the colormap depicted larger quantities (left/right). We varied whether the legend specified dark-more mapping or light-more mapping across trials and operationalized a dark-is-more bias as faster response time (RT) when the legend specified dark-more mapping. Experiment 1 demonstrated robust evidence for the dark-is-more bias, without evidence for a hotspot-is-more bias. Experiments 2 to 4 suggest that a hotspot-is-more bias becomes relevant when hotspots are a statistically reliable cue to "more" (i.e., the locus of larger quantities) and when hotspots are more perceptually pronounced. Yet, comparing conditions in which the hotspots were "more," RTs were always faster for dark hotspots than light hotspots. Thus, in the presence of strong spatial cues to the locus of larger quantities, color-based biases still influenced interpretations of colormap data visualizations.

摘要

解释色标可视化需要确定可视化中的颜色维度如何映射到数据中的数量。人们有色觉偏见,会影响他们对色标的解释,例如暗色调表示更大的数量。之前关于基于颜色的偏见的研究主要集中在数据空间结构较弱的色标上,但基于颜色的偏见可能不会推广到数据空间结构较强的色标上,例如天气图和神经影像学脑图中常见的“热点”。可能会有一种热点更多的偏见,即推断热点内的颜色表示更大的数量,这可能会超过暗色调更多的偏见。我们在四个实验中测试了这种可能性。参与者看到了带有热点和指定颜色-数量映射的图例的色标。他们的任务是指出色标哪一侧表示更大的数量(左/右)。我们在试验中改变了图例指定暗色调更多映射还是亮色调更多映射,并将暗色调更多映射的更快响应时间 (RT) 定义为暗色调更多的偏见。实验 1 有力地证明了暗色调更多的偏见,而没有证据表明热点更多的偏见。实验 2 到 4 表明,当热点是“更多”的统计可靠线索(即更大数量的位置)并且热点更加明显时,热点更多的偏见就变得相关。然而,比较热点表示“更多”的条件时,暗热点的 RT 总是比亮热点快。因此,在存在强烈的更大数量位置空间线索的情况下,颜色偏见仍然会影响对色标数据可视化的解释。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62a1/7683863/f9275b31c773/jovi-20-12-7-f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验