Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT 84112, USA.
CECOAL (Centro de Ecología Aplicada del Litoral) CONICET, Corrientes, Argentina; División Ornitología, Museo Argentino de Ciencias Naturales "Bernardino Rivadavia" MACN-CONICET, Avenida Ángel Gallardo 470, Ciudad Autónoma de Buenos Aires, Argentina.
Curr Biol. 2017 Sep 11;27(17):2677-2683.e3. doi: 10.1016/j.cub.2017.07.059. Epub 2017 Aug 31.
The evolution of complex behavior is driven by the interplay of morphological specializations and neuromuscular control mechanisms [1-3], and it is often difficult to tease apart their respective contributions. Avian vocal learning and associated neural adaptations are thought to have played a major role in bird diversification [4-8], whereas functional significance of substantial morphological diversity of the vocal organ remains largely unexplored. Within the most species-rich order, Passeriformes, "tracheophones" are a suboscine group that, unlike their oscine sister taxon, does not exhibit vocal learning [9] and is thought to phonate with tracheal membranes [10, 11] instead of the two independent sources found in other passerines [12-14]. Here we show tracheophones possess three sound sources, two oscine-like labial pairs and the unique tracheal membranes, which collectively represent the largest described number of sound sources for a vocal organ. Birds with experimentally disabled tracheal membranes were still able to phonate. Instead of the main sound source, the tracheal membranes constitute a morphological specialization, which, through interaction with bronchial labia, contributes to different acoustic features such as spectral complexity, amplitude modulation, and enhanced sound amplitude. In contrast, these same features arise in oscines from neuromuscular control of two labial sources [15-17]. These findings are supported by a modeling approach and provide a clear example for how a morphological adaptation of the tracheophone vocal organ can generate specific, complex sound features. Morphological specialization therefore constitutes an alternative path in the evolution of acoustic diversity to that of oscine vocal learning and complex neural control.
复杂行为的进化是由形态特化和神经肌肉控制机制相互作用驱动的[1-3],而且往往很难区分它们各自的贡献。鸟类的发声学习和相关的神经适应被认为在鸟类多样化中发挥了重要作用[4-8],而发声器官的大量形态多样性的功能意义在很大程度上仍未得到探索。在种类最多的目——雀形目,“气管鸣禽”是一个亚鸣禽群体,与鸣禽的姐妹分类群不同,它们不表现出发声学习[9],并且被认为是通过气管膜发声[10,11],而不是其他雀形目鸟类中发现的两个独立的发声源[12-14]。在这里,我们表明气管鸣禽拥有三个发声源,两个类似鸣禽的唇部对和独特的气管膜,这共同代表了已知的发声器官中最大数量的发声源。实验性地使气管膜失能的鸟类仍然能够发声。气管膜不是主要的发声源,而是一种形态特化,通过与支气管唇的相互作用,有助于产生不同的声学特征,如频谱复杂性、幅度调制和增强的声音幅度。相比之下,鸣禽通过对两个唇部来源的神经肌肉控制产生了相同的特征[15-17]。这些发现得到了建模方法的支持,并为气管鸣禽发声器官的形态适应如何产生特定的、复杂的声音特征提供了一个明确的例子。因此,形态特化构成了与鸣禽发声学习和复杂神经控制相比,声学多样性进化的另一种途径。