Suppr超能文献

使用优化的无权重神经网络实现低功耗可穿戴设备的疾病自动诊断。

Automatic disease diagnosis using optimised weightless neural networks for low-power wearable devices.

作者信息

Cheruku Ramalingaswamy, Edla Damodar Reddy, Kuppili Venkatanareshbabu, Dharavath Ramesh, Beechu Nareshkumar Reddy

机构信息

Department of Computer Science and Engineering, National Institute of Technology Goa, Ponda, Goa 403401, India.

Department of Computer Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand 826004, India.

出版信息

Healthc Technol Lett. 2017 May 19;4(4):122-128. doi: 10.1049/htl.2017.0003. eCollection 2017 Aug.

Abstract

Low-power wearable devices for disease diagnosis are used at anytime and anywhere. These are non-invasive and pain-free for the better quality of life. However, these devices are resource constrained in terms of memory and processing capability. Memory constraint allows these devices to store a limited number of patterns and processing constraint provides delayed response. It is a challenging task to design a robust classification system under above constraints with high accuracy. In this Letter, to resolve this problem, a novel architecture for weightless neural networks (WNNs) has been proposed. It uses variable sized random access memories to optimise the memory usage and a modified binary TRIE data structure for reducing the test time. In addition, a bio-inspired-based genetic algorithm has been employed to improve the accuracy. The proposed architecture is experimented on various disease datasets using its software and hardware realisations. The experimental results prove that the proposed architecture achieves better performance in terms of accuracy, memory saving and test time as compared to standard WNNs. It also outperforms in terms of accuracy as compared to conventional neural network-based classifiers. The proposed architecture is a powerful part of most of the low-power wearable devices for the solution of memory, accuracy and time issues.

摘要

用于疾病诊断的低功耗可穿戴设备可随时随地使用。这些设备是非侵入性的,无痛,有助于提高生活质量。然而,这些设备在内存和处理能力方面资源有限。内存限制使得这些设备只能存储有限数量的模式,而处理限制则导致响应延迟。在上述限制条件下设计一个高精度的强大分类系统是一项具有挑战性的任务。在这篇快报中,为了解决这个问题,提出了一种用于无权重神经网络(WNN)的新颖架构。它使用可变大小的随机存取存储器来优化内存使用,并使用一种改进的二进制TRIE数据结构来减少测试时间。此外,还采用了一种基于生物启发的遗传算法来提高准确率。所提出的架构通过其软件和硬件实现,在各种疾病数据集上进行了实验。实验结果证明,与标准的WNN相比,所提出的架构在准确率、内存节省和测试时间方面都取得了更好的性能。与传统的基于神经网络的分类器相比,它在准确率方面也更胜一筹。所提出的架构是大多数低功耗可穿戴设备解决内存、准确率和时间问题的有力组成部分。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69d5/5569931/c22479cf8212/HTL.2017.0003.01.jpg

相似文献

2
Severity-Based Hierarchical ECG Classification Using Neural Networks.基于严重程度的神经网络分层心电图分类
IEEE Trans Biomed Circuits Syst. 2023 Feb;17(1):77-91. doi: 10.1109/TBCAS.2023.3242683.
6
Automatic Design of Convolutional Neural Network Architectures Under Resource Constraints.资源受限下卷积神经网络架构的自动设计
IEEE Trans Neural Netw Learn Syst. 2023 Aug;34(8):3832-3846. doi: 10.1109/TNNLS.2021.3123105. Epub 2023 Aug 4.
7

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验