Nanoelektronik, Technische Fakultät, Christian-Albrechts-Universität zu Kiel, 24143, Kiel, Germany.
IHP - Leibniz-Institut für innovative Mikroelektronik, 15236, Frankfurt (Oder), Germany.
Sci Rep. 2020 Sep 2;10(1):14450. doi: 10.1038/s41598-020-71334-x.
Biological neural networks outperform current computer technology in terms of power consumption and computing speed while performing associative tasks, such as pattern recognition. The analogue and massive parallel in-memory computing in biology differs strongly from conventional transistor electronics that rely on the von Neumann architecture. Therefore, novel bio-inspired computing architectures have been attracting a lot of attention in the field of neuromorphic computing. Here, memristive devices, which serve as non-volatile resistive memory, are employed to emulate the plastic behaviour of biological synapses. In particular, CMOS integrated resistive random access memory (RRAM) devices are promising candidates to extend conventional CMOS technology to neuromorphic systems. However, dealing with the inherent stochasticity of resistive switching can be challenging for network performance. In this work, the probabilistic switching is exploited to emulate stochastic plasticity with fully CMOS integrated binary RRAM devices. Two different RRAM technologies with different device variabilities are investigated in detail, and their potential applications in stochastic artificial neural networks (StochANNs) capable of solving MNIST pattern recognition tasks is examined. A mixed-signal implementation with hardware synapses and software neurons combined with numerical simulations shows that the proposed concept of stochastic computing is able to process analogue data with binary memory cells.
生物神经网络在执行联想任务(如图案识别)时,在功耗和计算速度方面优于当前的计算机技术。生物学中的模拟和大规模并行内存计算与依赖冯·诺依曼架构的传统晶体管电子技术有很大的不同。因此,新型的受生物启发的计算架构在神经形态计算领域引起了广泛关注。在这里,作为非易失性电阻存储器的忆阻器被用于模拟生物突触的塑性行为。特别是,CMOS 集成阻变随机存取存储器 (RRAM) 器件有望将传统的 CMOS 技术扩展到神经形态系统。然而,处理电阻开关的固有随机性可能会对网络性能造成挑战。在这项工作中,我们利用概率开关来模拟具有完全 CMOS 集成二进制 RRAM 器件的随机塑性。详细研究了两种具有不同器件变异性的 RRAM 技术,并研究了它们在能够解决 MNIST 模式识别任务的随机人工神经网络 (StochANN) 中的潜在应用。带有硬件突触和软件神经元的混合信号实现以及数值模拟表明,所提出的基于随机计算的概念能够使用二进制存储单元处理模拟数据。