Suppr超能文献

利用整合代谢模型和转录组数据筛选出的药物对顺铂耐药卵巢癌细胞进行增殖抑制

Proliferation inhibition of cisplatin-resistant ovarian cancer cells using drugs screened by integrating a metabolic model and transcriptomic data.

作者信息

Motamedian E, Taheri E, Bagheri F

机构信息

Department of Biotechnology, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran.

出版信息

Cell Prolif. 2017 Dec;50(6). doi: 10.1111/cpr.12370. Epub 2017 Sep 3.

Abstract

OBJECTIVES

If screening to find effective drugs is possible, the inhibition of proliferation using existing drugs can be a practical strategy to control the drug resistance of cancer. Development of a system-oriented strategy to find effective drugs was the main aim of this research.

MATERIALS AND METHODS

An algorithm (transcriptional regulated flux balance analysis [TRFBA]) integrating a generic human metabolic model with transcriptomic data was used to identify genes affecting the growth of drug-resistant cancer cells. Drugs that inhibit activation of the target genes were found and their effect on the proliferation was experimentally evaluated.

RESULTS

Experimental assessments demonstrated that TRFBA improves the prediction of cancer cell growth in comparison with previous algorithms. The algorithm was then used to propose the system-oriented strategy to search drugs effective in limiting the growth rate of the cisplatin-resistant A2780 epithelial ovarian cancer cell. Experimental evaluations resulted in the selection of azathioprine, terbinafine, hydralazine and sodium valproate that appropriately inhibit the proliferation of resistant cancer cells while minimally affecting normal cells. Furthermore, experimental data indicate that the selected drugs are synergistic and can be used in combination therapies.

CONCLUSIONS

The proposed strategy was successful to identify drugs effective on the viability of resistant cancer cells. This strategy can enhance the potency of treatments for drug-resistant cancer cells and provides the possibility of using existing drugs.

摘要

目的

如果能够通过筛选找到有效的药物,那么利用现有药物抑制增殖可能是控制癌症耐药性的一种实用策略。本研究的主要目的是制定一种面向系统的策略来寻找有效药物。

材料与方法

使用一种将通用人类代谢模型与转录组数据相结合的算法(转录调控通量平衡分析[TRFBA])来识别影响耐药癌细胞生长的基因。找到抑制靶基因激活的药物,并通过实验评估它们对增殖的影响。

结果

实验评估表明,与先前的算法相比,TRFBA提高了对癌细胞生长的预测能力。然后使用该算法提出面向系统的策略,以寻找对限制顺铂耐药的A2780上皮性卵巢癌细胞生长速率有效的药物。实验评估结果筛选出了硫唑嘌呤、特比萘芬、肼屈嗪和丙戊酸钠,这些药物能适当抑制耐药癌细胞的增殖,同时对正常细胞的影响最小。此外,实验数据表明所选药物具有协同作用,可用于联合治疗。

结论

所提出的策略成功地识别出了对耐药癌细胞活力有效的药物。该策略可以增强对耐药癌细胞的治疗效果,并提供使用现有药物的可能性。

相似文献

引用本文的文献

4
8
Molecular characterization of breast cancer cell response to metabolic drugs.乳腺癌细胞对代谢药物反应的分子特征
Oncotarget. 2018 Jan 8;9(11):9645-9660. doi: 10.18632/oncotarget.24047. eCollection 2018 Feb 9.

本文引用的文献

10
DrugBank 4.0: shedding new light on drug metabolism.DrugBank 4.0:揭示药物代谢的新视角。
Nucleic Acids Res. 2014 Jan;42(Database issue):D1091-7. doi: 10.1093/nar/gkt1068. Epub 2013 Nov 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验