Yizhak Keren, Gaude Edoardo, Le Dévédec Sylvia, Waldman Yedael Y, Stein Gideon Y, van de Water Bob, Frezza Christian, Ruppin Eytan
Blavatnik School of Computer Science, Tel-Aviv University, Tel-Aviv, Israel.
MRC Cancer Unit, University of Cambridge, Cambridge, United Kingdom.
Elife. 2014 Nov 21;3:e03641. doi: 10.7554/eLife.03641.
Utilizing molecular data to derive functional physiological models tailored for specific cancer cells can facilitate the use of individually tailored therapies. To this end we present an approach termed PRIME for generating cell-specific genome-scale metabolic models (GSMMs) based on molecular and phenotypic data. We build >280 models of normal and cancer cell-lines that successfully predict metabolic phenotypes in an individual manner. We utilize this set of cell-specific models to predict drug targets that selectively inhibit cancerous but not normal cell proliferation. The top predicted target, MLYCD, is experimentally validated and the metabolic effects of MLYCD depletion investigated. Furthermore, we tested cell-specific predicted responses to the inhibition of metabolic enzymes, and successfully inferred the prognosis of cancer patients based on their PRIME-derived individual GSMMs. These results lay a computational basis and a counterpart experimental proof of concept for future personalized metabolic modeling applications, enhancing the search for novel selective anticancer therapies.
利用分子数据来推导针对特定癌细胞量身定制的功能生理模型,有助于使用个体化的定制疗法。为此,我们提出了一种称为PRIME的方法,用于基于分子和表型数据生成细胞特异性的基因组规模代谢模型(GSMM)。我们构建了超过280个正常和癌细胞系模型,这些模型成功地以个体方式预测代谢表型。我们利用这组细胞特异性模型来预测选择性抑制癌细胞而非正常细胞增殖的药物靶点。预测排名靠前的靶点MLYCD经过实验验证,并对MLYCD缺失的代谢效应进行了研究。此外,我们测试了细胞特异性对代谢酶抑制的预测反应,并基于从PRIME衍生的个体GSMM成功推断出癌症患者的预后。这些结果为未来个性化代谢建模应用奠定了计算基础和相应的实验概念验证,加强了对新型选择性抗癌疗法的探索。