Suppr超能文献

耐药性乳腺癌细胞的全基因组敲除模拟与聚类分析揭示了药物致敏靶点。

Genome-scale knockout simulation and clustering analysis of drug-resistant breast cancer cells reveal drug sensitization targets.

作者信息

Lim JinA, Jung Hae Deok, Park Soo Young, Jeon Moonhyeon, Kim Da Sol, Cho Ryeongeun, Han Dohyun, Ryu Han Suk, Kim Yoosik, Kim Hyun Uk

机构信息

Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea.

Department of Pathology, Seoul National University Hospital, Seoul 03080, Republic of Korea.

出版信息

Proc Natl Acad Sci U S A. 2025 Jul;122(26):e2425384122. doi: 10.1073/pnas.2425384122. Epub 2025 Jun 25.

Abstract

Anticancer chemotherapy is an essential part of cancer treatment, but the emergence of resistance remains a major hurdle. Metabolic reprogramming is a notable phenotype associated with the acquisition of drug resistance. Here, we develop a computational framework that predicts metabolic gene targets capable of reverting the metabolic state of drug-resistant cells to that of drug-sensitive parental cells, thereby sensitizing the resistant cells. The computational framework performs single-gene knockout simulation of genome-scale metabolic models that predicts genome-wide metabolic flux distribution in drug-resistant cells, and clusters the resulting knockout flux data using uniform manifold approximation and projection, followed by -means clustering. From the clustering analysis, knockout genes that lead to the flux data near that of drug-sensitive cells are considered drug sensitization targets. This computational approach is demonstrated using doxorubicin- and paclitaxel-resistant MCF7 breast cancer cells. Drug sensitization targets are further refined based on proteome and metabolome data, which generate for doxorubicin-resistant MCF7, for paclitaxel-resistant MCF7, and as a common target. These targets are experimentally validated where treating drug-resistant cancer cells with small-molecule inhibitors results in increased sensitivity of drug-resistant cells to doxorubicin or paclitaxel. The applicability of the developed framework is further demonstrated using drug-resistant triple-negative breast cancer cells. Taken together, the computational framework predicts drug sensitization targets in an intuitive and cost-efficient manner and can be applied to overcome drug-resistant cells associated with various cancers and other metabolic diseases.

摘要

抗癌化疗是癌症治疗的重要组成部分,但耐药性的出现仍然是一个主要障碍。代谢重编程是与获得耐药性相关的一个显著表型。在此,我们开发了一个计算框架,该框架可预测能够将耐药细胞的代谢状态恢复到药物敏感亲代细胞代谢状态的代谢基因靶点,从而使耐药细胞敏感化。该计算框架对基因组规模代谢模型进行单基因敲除模拟,以预测耐药细胞中的全基因组代谢通量分布,并使用均匀流形近似和投影对所得的敲除通量数据进行聚类,然后进行K均值聚类。通过聚类分析,那些导致通量数据接近药物敏感细胞通量数据的敲除基因被视为药物敏感化靶点。使用对阿霉素和紫杉醇耐药的MCF7乳腺癌细胞对这种计算方法进行了验证。基于蛋白质组和代谢组数据进一步优化药物敏感化靶点,这些数据为阿霉素耐药的MCF7细胞产生了[具体数量1]个靶点,为紫杉醇耐药的MCF7细胞产生了[具体数量2]个靶点,并产生了[具体数量3]个共同靶点。在用小分子抑制剂处理耐药癌细胞会导致耐药细胞对阿霉素或紫杉醇的敏感性增加的实验中对这些靶点进行了验证。使用耐药三阴性乳腺癌细胞进一步证明了所开发框架的适用性。综上所述,该计算框架以直观且经济高效的方式预测药物敏感化靶点,可用于克服与各种癌症和其他代谢疾病相关的耐药细胞。

相似文献

1
Genome-scale knockout simulation and clustering analysis of drug-resistant breast cancer cells reveal drug sensitization targets.
Proc Natl Acad Sci U S A. 2025 Jul;122(26):e2425384122. doi: 10.1073/pnas.2425384122. Epub 2025 Jun 25.
4
Cost-effectiveness of using prognostic information to select women with breast cancer for adjuvant systemic therapy.
Health Technol Assess. 2006 Sep;10(34):iii-iv, ix-xi, 1-204. doi: 10.3310/hta10340.
6
The Black Book of Psychotropic Dosing and Monitoring.
Psychopharmacol Bull. 2024 Jul 8;54(3):8-59.
7
Taxane monotherapy regimens for the treatment of recurrent epithelial ovarian cancer.
Cochrane Database Syst Rev. 2022 Jul 12;7(7):CD008766. doi: 10.1002/14651858.CD008766.pub3.
8
Systemic treatments for metastatic cutaneous melanoma.
Cochrane Database Syst Rev. 2018 Feb 6;2(2):CD011123. doi: 10.1002/14651858.CD011123.pub2.
9
A systematic overview of chemotherapy effects in breast cancer.
Acta Oncol. 2001;40(2-3):253-81. doi: 10.1080/02841860151116349.

本文引用的文献

2
The SRC-family serves as a therapeutic target in triple negative breast cancer with acquired resistance to chemotherapy.
Br J Cancer. 2024 Nov;131(10):1656-1667. doi: 10.1038/s41416-024-02875-5. Epub 2024 Oct 10.
3
MetaboAnalyst 6.0: towards a unified platform for metabolomics data processing, analysis and interpretation.
Nucleic Acids Res. 2024 Jul 5;52(W1):W398-W406. doi: 10.1093/nar/gkae253.
4
Reconstruction of cell-specific models capturing the influence of metabolism on DNA methylation in cancer.
Comput Biol Med. 2024 Mar;170:108052. doi: 10.1016/j.compbiomed.2024.108052. Epub 2024 Feb 1.
5
Empowering drug off-target discovery with metabolic and structural analysis.
Nat Commun. 2023 Jun 9;14(1):3390. doi: 10.1038/s41467-023-38859-x.
6
The role of the Nrf2/GSH antioxidant system in cisplatin resistance in malignant rhabdoid tumours.
J Cancer Res Clin Oncol. 2023 Sep;149(11):8379-8391. doi: 10.1007/s00432-023-04734-x. Epub 2023 Apr 20.
7
Targeting epigenetic regulators to overcome drug resistance in cancers.
Signal Transduct Target Ther. 2023 Feb 17;8(1):69. doi: 10.1038/s41392-023-01341-7.
8
Machine learning-guided evaluation of extraction and simulation methods for cancer patient-specific metabolic models.
Comput Struct Biotechnol J. 2022 Jun 15;20:3041-3052. doi: 10.1016/j.csbj.2022.06.027. eCollection 2022.
10
INTEGRATE: Model-based multi-omics data integration to characterize multi-level metabolic regulation.
PLoS Comput Biol. 2022 Feb 7;18(2):e1009337. doi: 10.1371/journal.pcbi.1009337. eCollection 2022 Feb.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验