Suppr超能文献

基于古德-图灵理论破译未被发现的物种、系统发育和功能多样性之谜。

Deciphering the enigma of undetected species, phylogenetic, and functional diversity based on Good-Turing theory.

机构信息

Institute of Statistics, National Tsing Hua University, Hsin-Chu, 30043, Taiwan.

Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, 06269, USA.

出版信息

Ecology. 2017 Nov;98(11):2914-2929. doi: 10.1002/ecy.2000.

Abstract

Estimating the species, phylogenetic, and functional diversity of a community is challenging because rare species are often undetected, even with intensive sampling. The Good-Turing frequency formula, originally developed for cryptography, estimates in an ecological context the true frequencies of rare species in a single assemblage based on an incomplete sample of individuals. Until now, this formula has never been used to estimate undetected species, phylogenetic, and functional diversity. Here, we first generalize the Good-Turing formula to incomplete sampling of two assemblages. The original formula and its two-assemblage generalization provide a novel and unified approach to notation, terminology, and estimation of undetected biological diversity. For species richness, the Good-Turing framework offers an intuitive way to derive the non-parametric estimators of the undetected species richness in a single assemblage, and of the undetected species shared between two assemblages. For phylogenetic diversity, the unified approach leads to an estimator of the undetected Faith's phylogenetic diversity (PD, the total length of undetected branches of a phylogenetic tree connecting all species), as well as a new estimator of undetected PD shared between two phylogenetic trees. For functional diversity based on species traits, the unified approach yields a new estimator of undetected Walker et al.'s functional attribute diversity (FAD, the total species-pairwise functional distance) in a single assemblage, as well as a new estimator of undetected FAD shared between two assemblages. Although some of the resulting estimators have been previously published (but derived with traditional mathematical inequalities), all taxonomic, phylogenetic, and functional diversity estimators are now derived under the same framework. All the derived estimators are theoretically lower bounds of the corresponding undetected diversities; our approach reveals the sufficient conditions under which the estimators are nearly unbiased, thus offering new insights. Simulation results are reported to numerically verify the performance of the derived estimators. We illustrate all estimators and assess their sampling uncertainty with an empirical dataset for Brazilian rain forest trees. These estimators should be widely applicable to many current problems in ecology, such as the effects of climate change on spatial and temporal beta diversity and the contribution of trait diversity to ecosystem multi-functionality.

摘要

估计群落的物种、系统发育和功能多样性具有挑战性,因为即使进行密集采样,稀有物种也常常无法被检测到。古特定律频率公式最初是为密码学开发的,它根据对个体的不完全样本,在单一集合中估计稀有物种的真实频率,该公式可用于生态环境。到目前为止,该公式从未用于估计未检测到的物种、系统发育和功能多样性。在这里,我们首先将古特定律公式推广到两个集合的不完全采样。原始公式及其两集合概括为未检测到的生物多样性的表示法、术语和估计提供了一种新颖而统一的方法。对于物种丰富度,古特定律框架提供了一种直观的方法,可以从单个集合中推导出未检测到的物种丰富度的非参数估计值,以及两个集合之间共有的未检测到的物种丰富度的非参数估计值。对于系统发育多样性,统一方法导致未检测到的费思系统发育多样性(PD,连接所有物种的系统发育树中未检测到的分支总长度)的估计值,以及两个系统发育树之间共有的未检测到的 PD 的新估计值。对于基于物种特征的功能多样性,统一方法产生了单个集合中未检测到的沃克等人的功能属性多样性(FAD,物种对之间的总功能距离)的新估计值,以及两个集合之间共有的未检测到的 FAD 的新估计值。虽然一些由此产生的估计值以前已经发表过(但使用传统的数学不等式推导),但现在所有的分类学、系统发育和功能多样性估计值都是在同一个框架下推导出来的。所有的衍生估计值都是相应未检测到的多样性的理论下限;我们的方法揭示了估计值几乎无偏的充分条件,从而提供了新的见解。报告了模拟结果以数值验证推导的估计值的性能。我们用巴西雨林树木的实证数据集来说明所有的估计值,并评估它们的抽样不确定性。这些估计值应该广泛适用于生态学中的许多当前问题,例如气候变化对时空β多样性的影响以及特征多样性对生态系统多功能性的贡献。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验