Suppr超能文献

固态核磁共振光谱学在超分子组装体和蛋白质聚集物方面的研究进展。

Solid-state NMR spectroscopic trends for supramolecular assemblies and protein aggregates.

机构信息

Department Chemistry, Ludwig-Maximilians-University Munich, Butenandtstr. 5-13, 81377 Munich, Germany.

出版信息

Solid State Nucl Magn Reson. 2017 Oct;87:45-53. doi: 10.1016/j.ssnmr.2017.08.003. Epub 2017 Aug 24.

Abstract

Solid-state NMR is able to generate structural data on sample preparations that are explicitly non-crystalline. In particular, for amyloid fibril samples, which can comprise significant degrees of sample disorder, solid-state NMR has been used very successfully. But also solid-state NMR studies of other supramolecular assemblies that have resisted assessment by more standard methods are being performed with increasing ease and biological impact, many of which are briefly reviewed here. New technical trends with respect to structure calculation, protein dynamics and smaller sample amounts have reshaped the field of solid-state NMR recently. In particular, proton-detected approaches based on fast Magic-Angle Spinning (MAS) were demonstrated for crystalline systems initially. Currently, such approaches are being expanded to the above-mentioned non-crystalline targets, the characterization of which can now be pursued with sample amounts on the order of a milligram. In this Trends article, I am giving a brief overview about achievements of the last years as well as the directions that the field has been heading into and delineate some satisfactory perspectives for solid-state NMR's future striving.

摘要

固态 NMR 能够生成明确为非晶态的样品制备结构数据。特别是对于淀粉样纤维样品,其可能包含相当程度的样品无序,固态 NMR 已经非常成功地用于此类样品。此外,对于其他通过更标准方法难以评估的超分子组装体,固态 NMR 研究也在日益增加,这里简要综述了其中的一些。在结构计算、蛋白质动力学和更小的样品量方面的新技术趋势最近重塑了固态 NMR 领域。特别是,最初基于快速魔角旋转(MAS)的质子检测方法被应用于结晶体系。目前,这些方法正在扩展到上述非晶态目标,现在可以用毫克级的样品量来对其进行表征。在这篇综述文章中,我将简要概述过去几年的成就,以及该领域的发展方向,并为固态 NMR 的未来发展勾勒出一些令人满意的前景。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验