Chatterjee Avishek, Serban Monica, Abdulkarim Bassam, Panet-Raymond Valerie, Souhami Luis, Shenouda George, Sabri Siham, Jean-Claude Bertrand, Seuntjens Jan
McGill University Health Centre, Montreal, Quebec, Canada.
McGill University Health Centre, Montreal, Quebec, Canada.
Int J Radiat Oncol Biol Phys. 2017 Nov 15;99(4):1021-1028. doi: 10.1016/j.ijrobp.2017.07.012. Epub 2017 Jul 14.
The presence of multiple serial organs at risk (OARs) in close proximity to the tumor makes treatment planning for glioblastoma (GBM) complex and time consuming. The present study aimed to create a knowledge-based (KB) radiation therapy model for GBM patients using RapidPlan.
An initial model was trained using 82 glioblastoma patients treated with 60 Gy in 30 fractions. Plans were created using either volumetric modulated arc therapy (VMAT) or intensity modulated radiation therapy (IMRT). To improve the goodness-of-fit of the model, an intermediate model was generated by using the dose-volume histograms (DVHs) of best spared OARs of the initial model. Using the intermediate model and manual refinement, all 82 cases were replanned, resulting in the final model. The final model was validated on an independent set of 45 patients with GBM, astrocytoma, oligodendroglioma, and meningioma.
The plans created by the final model exhibited superior planning target volume (PTV) dose metrics compared with manual clinical plans: ΔD=-0.52 ± 0.20 Gy, and ΔD=0.80 ± 0.13 Gy (differences are computed as clinical-model). OAR maximum doses were statistically similar, with improved optic apparatus sparing (ΔD=2.78 ± 0.82 Gy). Stated improvements correspond to P<.05. The KB planning time is typically 7 minutes for IMRT and 13 minutes for VMAT, compared with a typical 4 hours for manual planning.
The KB approach results in significant improvement in planning efficiency and in superior PTV coverage and better normal tissue sparing irrespective of tumor size and location within the brain.
由于多个连续的危及器官(OARs)紧邻肿瘤,胶质母细胞瘤(GBM)的治疗计划制定复杂且耗时。本研究旨在使用RapidPlan为GBM患者创建基于知识(KB)的放射治疗模型。
使用82例接受30次分割、总剂量60 Gy治疗的胶质母细胞瘤患者训练初始模型。计划采用容积调强弧形放疗(VMAT)或调强放射治疗(IMRT)制定。为提高模型的拟合优度,通过使用初始模型中最佳保留OARs的剂量体积直方图(DVHs)生成中间模型。使用中间模型并进行人工优化,对所有82例病例重新规划,得到最终模型。最终模型在一组45例GBM、星形细胞瘤、少突胶质细胞瘤和脑膜瘤患者的独立数据集上进行验证。
与人工临床计划相比,最终模型生成的计划显示出更好的计划靶区(PTV)剂量指标:ΔD=-0.52±0.20 Gy,以及ΔD=0.80±0.13 Gy(差异按临床-模型计算)。OAR的最大剂量在统计学上相似,视神经装置的保留情况有所改善(ΔD=2.78±0.82 Gy)。所述改善对应于P<0.05。KB计划制定时间对于IMRT通常为7分钟,对于VMAT通常为13分钟,而人工计划制定通常为4小时。
无论肿瘤在脑内的大小和位置如何,KB方法均可显著提高计划制定效率,实现更好的PTV覆盖以及更好地保护正常组织。