Hong Seokjun, Lee Minjae, Kwon Yeong-Dae, Cho Dong-Il Dan, Kim Taehyun
ISRC/ASRI, Department of Electrical and Computer Engineering, Seoul National University.
Quantum Tech. Lab, SK Telecom.
J Vis Exp. 2017 Aug 17(126):56060. doi: 10.3791/56060.
Ions trapped in a quadrupole Paul trap have been considered one of the strong physical candidates to implement quantum information processing. This is due to their long coherence time and their capability to manipulate and detect individual quantum bits (qubits). In more recent years, microfabricated surface ion traps have received more attention for large-scale integrated qubit platforms. This paper presents a microfabrication methodology for ion traps using micro-electro-mechanical system (MEMS) technology, including the fabrication method for a 14 µm-thick dielectric layer and metal overhang structures atop the dielectric layer. In addition, an experimental procedure for trapping ytterbium (Yb) ions of isotope 174 (Yb) using 369.5 nm, 399 nm, and 935 nm diode lasers is described. These methodologies and procedures involve many scientific and engineering disciplines, and this paper first presents the detailed experimental procedures. The methods discussed in this paper can easily be extended to the trapping of Yb ions of isotope 171 (Yb) and to the manipulation of qubits.
被囚禁在四极保罗阱中的离子被认为是实现量子信息处理的有力物理候选者之一。这是由于它们具有较长的相干时间以及操纵和检测单个量子比特(量子位)的能力。近年来,微纳加工的表面离子阱在大规模集成量子比特平台方面受到了更多关注。本文介绍了一种使用微机电系统(MEMS)技术制造离子阱的微纳加工方法,包括制造14μm厚介电层的方法以及在介电层顶部的金属悬垂结构。此外,还描述了使用369.5nm、399nm和935nm二极管激光器捕获同位素174(Yb)镱离子的实验过程。这些方法和过程涉及许多科学和工程学科,本文首先介绍详细的实验过程。本文讨论的方法可以很容易地扩展到捕获同位素171(Yb)镱离子以及量子比特的操纵。