CNRS, Université de Bordeaux, ICMCB , UPR 9048, 33600 Pessac, France.
Department of Material Science and Engineering, University of California, Berkeley , Berkeley, California 94720, United States.
Nano Lett. 2017 Oct 11;17(10):5883-5890. doi: 10.1021/acs.nanolett.7b01288. Epub 2017 Sep 13.
Diverse topological defects arise in hexagonal manganites, such as ferroelectric vortices, as well as neutral and charged domain walls. The topological defects are intriguing because their low symmetry enables unusual couplings between structural, charge, and spin degrees of freedom, holding great potential for novel types of functional 2D and 1D systems. Despite the considerable advances in analyzing the different topological defects in hexagonal manganites, the understanding of their key intrinsic properties is still rather limited and disconnected. In particular, a rapidly increasing number of structural variants is reported without clarifying their relation, leading to a zoo of seemingly unrelated topological textures. Here, we combine picometer-precise scanning-transmission-electron microscopy with Landau theory modeling to clarify the inner structure of topological defects in ErZrMnO. By performing a comprehensive parametrization of the inner atomic defect structure, we demonstrate that one primary length scale drives the morphology of both vortices and domain walls. Our findings lead to a unifying general picture of this type of structural topological defects. We further derive novel fundamental and universal properties, such as unusual bound-charge distributions and electrostatics at the ferroelectric vortex cores with emergent U(1) symmetry.
在六方锰氧化物中会出现各种拓扑缺陷,如铁电涡旋以及中性和带电畴壁。这些拓扑缺陷很有趣,因为它们的低对称性使得结构、电荷和自旋自由度之间能够产生不寻常的耦合,为新型二维和一维系统提供了巨大的潜力。尽管人们在分析六方锰氧化物中的不同拓扑缺陷方面已经取得了相当大的进展,但对其关键内在特性的理解仍然相当有限且相互孤立。特别是,尽管报告了越来越多的结构变体,但没有阐明它们之间的关系,导致出现了大量看似不相关的拓扑纹理。在这里,我们结合皮米精度扫描透射电子显微镜和朗道理论建模来澄清 ErZrMnO 中拓扑缺陷的内部结构。通过对内部原子缺陷结构进行全面参数化,我们证明了一个主要的长度尺度驱动了涡旋和畴壁的形态。我们的研究结果为这种结构拓扑缺陷提供了一个统一的整体图像。我们进一步推导出了一些新的基本和普遍的特性,例如在铁电涡旋核心处出现的不寻常的束缚电荷分布和静电学,以及新兴的 U(1) 对称性。