Li Menglei, Tan Hengxin, Duan Wenhui
Department of Physics, Capital Normal University, Beijing 100048, China.
Max Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle (Saale), Germany.
Phys Chem Chem Phys. 2020 Jul 8;22(26):14415-14432. doi: 10.1039/d0cp02195d.
Hexagonal rare-earth manganites and ferrites are well-known improper ferroelectrics with low-temperature antiferromagnetism/weak ferromagnetism. In recent decades, new multi-functional device concepts and applications have provoked the exploration for multiferroics which simultaneously possess ferroelectric and magnetic orders. As a promising platform for multiferroicity, hexagonal manganites and ferrites are attracting great research interest among the fundamental scientific and technological communities. Moreover, the novel type of vortex-like ferroelectric domain walls are locked to the antiphase structural domain walls, providing an extra degree of freedom to tune the magnetoelectric coupling and other properties such as conductance. Here, we summarize the main experimental achievements and up-to-date theoretical understanding of the ferroelectric, magnetic, and magnetoelectric properties, as well as the intriguing domain patterns in hexagonal rare-earth manganites and ferrites. Recent work on non-stoichiometric compounds will also be briefly introduced.
六角形稀土锰酸盐和铁氧体是众所周知的具有低温反铁磁性/弱铁磁性的非本征铁电体。近几十年来,新的多功能器件概念和应用激发了对同时具有铁电和磁有序的多铁性材料的探索。作为多铁性的一个有前景的平台,六角形锰酸盐和铁氧体在基础科学和技术领域引起了极大的研究兴趣。此外,新型的涡旋状铁电畴壁与反相结构畴壁锁定在一起,为调节磁电耦合和其他性质(如电导率)提供了额外的自由度。在这里,我们总结了六角形稀土锰酸盐和铁氧体中铁电、磁性和磁电性质以及有趣的畴结构的主要实验成果和最新理论认识。还将简要介绍非化学计量化合物的近期研究工作。