Suppr超能文献

用于环境传感器的铁电畴壁

Ferroelectric Domain Walls for Environmental Sensors.

作者信息

Richarz Leonie, Skogvoll Ida Cathrine, Tokle Egil Ytterli, Hunnestad Kasper Aas, Ludacka Ursula, He Jiali, Bourret Edith, Yan Zewu, van Helvoort Antonius T J, Schultheiß Jan, Selbach Sverre Magnus, Meier Dennis

机构信息

Department of Materials Science and Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway.

Department of Electronic Systems, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway.

出版信息

ACS Appl Mater Interfaces. 2025 Aug 20;17(33):47576-47584. doi: 10.1021/acsami.5c04875. Epub 2025 Aug 4.

Abstract

Domain walls in ferroelectric oxides provide fertile ground for the development of next-generation nanotechnology. Examples include domain-wall-based memory, memristors, and diodes, where the unusual electronic properties and the quasi-two-dimensional nature of the walls are leveraged to emulate the behavior of electronic components at ultrasmall length scales. Here, we demonstrate atmosphere-related reversible changes in the electronic conduction at neutral ferroelectric domain walls in Er(Mn,Ti)O. By exposing the system to reducing and oxidizing conditions, we drive the domain walls from insulating to conducting and vice versa, translating the environmental changes into current signals. Density functional theory calculations show that the effect is predominately caused by charge carrier density modulations, which arise as oxygen interstitials accumulate at the domain walls. The work introduces an innovative concept for domain-wall-based environmental sensors, giving an additional dimension to the field of domain wall nanoelectronics and sensor technology in general.

摘要

铁电氧化物中的畴壁为下一代纳米技术的发展提供了丰富的土壤。例子包括基于畴壁的存储器、忆阻器和二极管,其中利用了壁的异常电子特性和准二维性质来模拟超小长度尺度下电子元件的行为。在这里,我们展示了在Er(Mn,Ti)O中中性铁电畴壁处与气氛相关的电子传导可逆变化。通过将系统暴露于还原和氧化条件下,我们使畴壁从绝缘变为导电,反之亦然,将环境变化转化为电流信号。密度泛函理论计算表明,这种效应主要是由电荷载流子密度调制引起的,这种调制是由于氧间隙原子在畴壁处积累而产生的。这项工作为基于畴壁的环境传感器引入了一个创新概念,为畴壁纳米电子学和一般传感器技术领域增添了一个新的维度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7c4/12371688/e49afd02bdf8/am5c04875_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验