Int J Sports Physiol Perform. 2018 Apr 1;13(4):474-481. doi: 10.1123/ijspp.2017-0374. Epub 2018 May 22.
This study compared the concurrent validity and reliability of previously proposed generalized group equations for estimating the bench press (BP) 1-repetition maximum (1RM) with the individualized load-velocity relationship modeled with a 2-point method.
Thirty men (BP 1RM relative to body mass: 1.08 [0.18] kg·kg) performed 2 incremental loading tests in the concentric-only BP exercise and another 2 in the eccentric-concentric BP exercise to assess their actual 1RM and load-velocity relationships. A high velocity (≈1 m·s) and a low velocity (≈0.5 m·s) were selected from their load-velocity relationships to estimate the 1RM from generalized group equations and through an individual linear model obtained from the 2 velocities.
The directly measured 1RM was highly correlated with all predicted 1RMs (r = .847-.977). The generalized group equations systematically underestimated the actual 1RM when predicted from the concentric-only BP (P < .001; effect size = 0.15-0.94) but overestimated it when predicted from the eccentric-concentric BP (P < .001; effect size = 0.36-0.98). Conversely, a low systematic bias (range: -2.3 to 0.5 kg) and random errors (range: 3.0-3.8 kg), no heteroscedasticity of errors (r = .053-.082), and trivial effect size (range: -0.17 to 0.04) were observed when the prediction was based on the 2-point method. Although all examined methods reported the 1RM with high reliability (coefficient of variation ≤ 5.1%; intraclass correlation coefficient ≥ .89), the direct method was the most reliable (coefficient of variation < 2.0%; intraclass correlation coefficient ≥ .98).
The quick, fatigue-free, and practical 2-point method was able to predict the BP 1RM with high reliability and practically perfect validity, and therefore, the authors recommend its use over generalized group equations.
本研究比较了先前提出的通用组方程与通过两点法建立的个体化负荷-速度关系模型来估计卧推(BP)1 次重复最大重量(1RM)的同时效度和可靠性。
30 名男性(BP 1RM 与体重的比值:1.08[0.18]kg·kg)进行了 2 次仅在向心阶段的 BP 递增负荷测试和另外 2 次在向心-离心阶段的 BP 递增负荷测试,以评估他们的实际 1RM 和负荷-速度关系。从他们的负荷-速度关系中选择高速度(≈1m·s)和低速度(≈0.5m·s),通过通用组方程和从这两个速度获得的个体线性模型来估计 1RM。
直接测量的 1RM 与所有预测的 1RM 高度相关(r=.847-.977)。当仅从向心阶段的 BP 进行预测时,通用组方程系统地低估了实际的 1RM(P<.001;效应量=0.15-0.94),但当从向心-离心阶段的 BP 进行预测时,又高估了实际的 1RM(P<.001;效应量=0.36-0.98)。相反,当基于两点法进行预测时,观察到较小的系统偏差(范围:-2.3 至 0.5kg)和随机误差(范围:3.0 至 3.8kg),误差无异方差性(r=.053-.082),且效应量较小(范围:-0.17 至 0.04)。虽然所有检查的方法都报告了较高的可靠性(变异系数≤5.1%;组内相关系数≥.89),但直接方法是最可靠的(变异系数<2.0%;组内相关系数≥.98)。
快速、无疲劳且实用的两点法能够以高可靠性和几乎完美的有效性预测 BP 1RM,因此,作者建议使用两点法,而不是通用组方程。