Suppr超能文献

大规模凝聚态物质密度泛函理论模拟:CRYSTAL代码的性能与能力

Large-Scale Condensed Matter DFT Simulations: Performance and Capabilities of the CRYSTAL Code.

作者信息

Erba A, Baima J, Bush I, Orlando R, Dovesi R

机构信息

Dipartimento di Chimica, Università di Torino , Via Giuria 5, 10125 Torino, Italy.

Oxford e-Research Centre, University of Oxford , 7 Keble Road, OX1 3QG, Oxford, U.K.

出版信息

J Chem Theory Comput. 2017 Oct 10;13(10):5019-5027. doi: 10.1021/acs.jctc.7b00687. Epub 2017 Sep 19.

Abstract

Nowadays, the efficient exploitation of high-performance computing resources is crucial to extend the applicability of first-principles theoretical methods to the description of large, progressively more realistic molecular and condensed matter systems. This can be achieved only by devising effective parallelization strategies for the most time-consuming steps of a calculation, which requires some effort given the usual complexity of quantum-mechanical algorithms, particularly so if parallelization is to be extended to all properties and not just to the basic functionalities of the code. In this Article, the performance and capabilities of the massively parallel version of the Crystal17 package for first-principles calculations on solids are discussed. In particular, we present: (i) recent developments allowing for a further improvement of the code scalability (up to 32 768 cores); (ii) a quantitative analysis of the scaling and memory requirements of the code when running calculations with several thousands (up to about 14 000) of atoms per cell; (iii) a documentation of the high numerical size consistency of the code; and (iv) an overview of recent ab initio studies of several physical properties (structural, energetic, electronic, vibrational, spectroscopic, thermodynamic, elastic, piezoelectric, topological) of large systems investigated with the code.

摘要

如今,高效利用高性能计算资源对于将第一性原理理论方法的适用性扩展到描述大型、日益逼真的分子和凝聚态物质系统至关重要。这只能通过为计算中最耗时的步骤设计有效的并行化策略来实现,鉴于量子力学算法通常的复杂性,这需要付出一些努力,特别是如果并行化要扩展到所有属性而不仅仅是代码的基本功能时。在本文中,讨论了用于固体第一性原理计算的Crystal17软件包大规模并行版本的性能和功能。特别是,我们展示了:(i)允许进一步提高代码可扩展性(高达32768个核心)的最新进展;(ii)在每个晶胞运行数千个(高达约14000个)原子的计算时,对代码的扩展性和内存需求的定量分析;(iii)代码高数值尺寸一致性的文档记录;以及(iv)对使用该代码研究的大型系统的几种物理性质(结构、能量、电子、振动、光谱、热力学、弹性、压电、拓扑)的近期从头算研究的概述。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验