Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot76100, Israel.
Laboratory for Chemistry of Novel Materials, University of Mons, 7000Mons, Belgium.
J Phys Chem Lett. 2023 Feb 16;14(6):1570-1577. doi: 10.1021/acs.jpclett.2c03316. Epub 2023 Feb 7.
We combine temperature-dependent low-frequency Raman measurements and first-principles calculations to obtain a mechanistic understanding of the order-disorder phase transition of 2,7-di--butylbenzo[]benzo[4,5]thieno[2,3]thiophene (ditBu-BTBT) and 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-pentacene) semiconducting amphidynamic crystals. We identify the lattice normal modes associated with the phase transition by following the position and width of the Raman peaks with temperature and identifying peaks that exhibit nonlinear dependence toward the phase transition temperature. Our findings are interpreted according to the "hardcore mode" model previously used to describe order-disorder phase transitions in inorganic and hybrid crystals with a Brownian sublattice. Within the framework of this model, ditBu-BTBT exhibits an ideal behavior where only one lattice mode is associated with the phase transition. TIPS-pentacene deviates strongly from the model due to strong interactions between lattice modes. We discuss the origin of the different behaviors and suggest side-chain engineering as a tool to control polymorphism in amphidynamic crystals.
我们结合温度依赖的低频拉曼测量和第一性原理计算,以获得 2,7-二--丁基苯并[4,5]噻吩并[2,3]噻吩(ditBu-BTBT)和 6,13-双(三异丙基硅基乙炔基)并五苯(TIPS-pentacene)半导体各向异性晶体有序-无序相转变的机理理解。我们通过随温度跟踪拉曼峰的位置和宽度,并识别出表现出对相转变温度非线性依赖的峰,来确定与相转变相关的晶格正常模式。根据先前用于描述具有布朗子晶格的无机和混合晶体的有序-无序相转变的“硬芯模式”模型来解释我们的发现。在该模型的框架内,ditBu-BTBT 表现出理想行为,其中只有一个晶格模式与相转变相关。TIPS-pentacene 由于晶格模式之间的强烈相互作用,强烈偏离模型。我们讨论了不同行为的起源,并提出侧链工程作为控制各向异性晶体中多晶型性的工具。