Suppr超能文献

使用超临界二氧化碳包封叶黄素于脂质体中。

Encapsulation of lutein in liposomes using supercritical carbon dioxide.

机构信息

Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada.

Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada.

出版信息

Food Res Int. 2017 Oct;100(Pt 1):168-179. doi: 10.1016/j.foodres.2017.06.055. Epub 2017 Jun 22.

Abstract

Liposomes loaded with lutein were prepared utilizing supercritical carbon dioxide (SC-CO). The effects of pressure, depressurization rate, temperature and lutein-to-lipid ratio on particle size distribution, zeta potential, encapsulation efficiency (EE), bioactive loading, morphology, phase transition and crystallinity were investigated. Liposomes prepared by the SC-CO method had a particle size of 147.6±1.9nm-195.4±2.3nm, an encapsulation efficiency of 56.7±0.7%-97.0±0.8% and a zeta potential of -54.5±1.2mV to -61.7±0.6mV. A higher pressure (200-300bar) and depressurization rate (90-200bar/min) promoted a higher encapsulation of lutein whereas the lutein-to-lipid ratio had the dominant effect on the morphology of vesicles along with size distribution and EE. X-ray diffraction data implied a substantial drop in the crystallinity of lutein upon its redistribution in the liposome membranes. Differential scanning calorimetry indicated a broadened phase transition upon the simultaneous rearrangement of lutein and phospholipid molecules into liposomal vesicles. The SC-CO method resulted in particle characteristics highly associated with the ability of CO to disperse phospholipids and lutein molecules. It offers a promising approach to use dense phase CO to homogenize hydrophobic or amphiphilic aggregates suspended in an aqueous medium and regulate the vesicular characteristics via pressure and depressurization rate. The SC-CO method has potential for scalable production of liposomal nanovesicles with desirable characteristics and free of organic solvents.

摘要

利用超临界二氧化碳(SC-CO)制备了负载叶黄素的脂质体。考察了压力、降压速率、温度和叶黄素与脂质的比例对粒径分布、Zeta 电位、包封效率(EE)、生物活性负载、形态、相变和结晶度的影响。SC-CO 法制备的脂质体粒径为 147.6±1.9nm-195.4±2.3nm,包封效率为 56.7±0.7%-97.0±0.8%,Zeta 电位为-54.5±1.2mV 至-61.7±0.6mV。较高的压力(200-300bar)和降压速率(90-200bar/min)有利于叶黄素的高包封,而叶黄素与脂质的比例对囊泡的形态以及粒径分布和 EE 有主导作用。X 射线衍射数据表明,叶黄素在重新分布到脂质体膜中时结晶度显著下降。差示扫描量热法表明,在叶黄素和磷脂分子同时重新排列成脂质体囊泡时,相变变宽。SC-CO 法导致的颗粒特性与 CO 分散磷脂和叶黄素分子的能力高度相关。它提供了一种有前途的方法,利用高密度相 CO 均匀分散悬浮在水介质中的疏水性或两亲性聚集体,并通过压力和降压速率调节囊泡特性。SC-CO 法具有生产具有理想特性且无有机溶剂的脂质体纳米囊泡的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验