Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, P.R. China.
Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, P.R. China.
Clin Cancer Res. 2017 Nov 15;23(22):6904-6911. doi: 10.1158/1078-0432.CCR-17-1510. Epub 2017 Sep 5.
To develop and validate a radiomics nomogram for the preoperative prediction of lymph node (LN) metastasis in bladder cancer. A total of 118 eligible bladder cancer patients were divided into a training set ( = 80) and a validation set ( = 38). Radiomics features were extracted from arterial-phase CT images of each patient. A radiomics signature was then constructed with the least absolute shrinkage and selection operator algorithm in the training set. Combined with independent risk factors, a radiomics nomogram was built with a multivariate logistic regression model. Nomogram performance was assessed in the training set and validated in the validation set. Finally, decision curve analysis was performed with the combined training and validation set to estimate the clinical usefulness of the nomogram. The radiomics signature, consisting of nine LN status-related features, achieved favorable prediction efficacy. The radiomics nomogram, which incorporated the radiomics signature and CT-reported LN status, also showed good calibration and discrimination in the training set [AUC, 0.9262; 95% confidence interval (CI), 0.8657-0.9868] and the validation set (AUC, 0.8986; 95% CI, 0.7613-0.9901). The decision curve indicated the clinical usefulness of our nomogram. Encouragingly, the nomogram also showed favorable discriminatory ability in the CT-reported LN-negative (cN0) subgroup (AUC, 0.8810; 95% CI, 0.8021-0.9598). The presented radiomics nomogram, a noninvasive preoperative prediction tool that incorporates the radiomics signature and CT-reported LN status, shows favorable predictive accuracy for LN metastasis in patients with bladder cancer. Multicenter validation is needed to acquire high-level evidence for its clinical application. .
建立并验证一种基于影像组学的nomogram 模型,用于术前预测膀胱癌患者的淋巴结(LN)转移。共纳入 118 例符合条件的膀胱癌患者,将其分为训练集( = 80)和验证集( = 38)。从每位患者的动脉期 CT 图像中提取影像组学特征。然后,在训练集中使用最小绝对值收缩和选择算子算法构建影像组学特征签名。结合独立的危险因素,使用多变量逻辑回归模型构建影像组学 nomogram。在训练集和验证集中评估 nomogram 的性能,并在联合训练和验证集中进行决策曲线分析,以评估 nomogram 的临床实用性。该影像组学特征签名由 9 个与 LN 状态相关的特征组成,具有良好的预测效果。纳入影像组学特征签名和 CT 报告的 LN 状态的影像组学 nomogram 在训练集(AUC:0.9262;95%置信区间(CI):0.8657-0.9868)和验证集(AUC:0.8986;95%CI:0.7613-0.9901)中均表现出良好的校准度和区分度。决策曲线分析表明,该 nomogram 具有临床实用性。令人鼓舞的是,该 nomogram 在 CT 报告的 LN 阴性(cN0)亚组中也表现出良好的区分能力(AUC:0.8810;95%CI:0.8021-0.9598)。本研究提出的基于影像组学的 nomogram 模型是一种非侵入性的术前预测工具,将影像组学特征签名和 CT 报告的 LN 状态相结合,可准确预测膀胱癌患者的 LN 转移。需要进行多中心验证,以获取其临床应用的高级别证据。