Suppr超能文献

基于深度学习的淋巴结转移状态可从肌层浸润性膀胱癌组织病理学预测预后。

Deep learning-based lymph node metastasis status predicts prognosis from muscle-invasive bladder cancer histopathology.

作者信息

Zheng Qingyuan, Jiao Panpan, Yang Rui, Fan Junjie, Liu Yunxun, Yang Xiangxiang, Yuan Jingping, Chen Zhiyuan, Liu Xiuheng

机构信息

Department of Urology, Renmin Hospital of Wuhan University, 99 Zhang Zhi-dong Road, Wuhan, Hubei, 430060, P.R. China.

Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China.

出版信息

World J Urol. 2025 Jan 10;43(1):65. doi: 10.1007/s00345-025-05440-8.

Abstract

PURPOSE

To develop a deep learning (DL) model based on primary tumor tissue to predict the lymph node metastasis (LNM) status of muscle invasive bladder cancer (MIBC), while validating the prognostic value of the predicted aiN score in MIBC patients.

METHODS

A total of 323 patients from The Cancer Genome Atlas (TCGA) were used as the training and internal validation set, with image features extracted using a visual encoder called UNI. We investigated the ability to predict LNM status while assessing the prognostic value of aiN score. External validation was conducted on 139 patients from Renmin Hospital of Wuhan University (RHWU; Wuhan, China).

RESULTS

The DL model achieved area under the receiver operating characteristic curves of 0.79 (95% confidence interval [CI], 0.69-0.88) in the internal validation set for predicting LNM status, and 0.72 (95% CI, 0.68-0.75) in the external validation set. In multivariable Cox analysis, the model-predicted aiN score emerged as an independent predictor of survival for MIBC patients, with a hazard ratio of 1.608 (95% CI, 1.128-2.291; p = 0.008) in the TCGA cohort and 2.746 (95% CI, 1.486-5.076; p < 0.001) in the RHWU cohort. Additionally, the aiN score maintained prognostic value across different subgroups.

CONCLUSION

In this study, DL-based image analysis showed promising results by directly extracting relevant prognostic information from H&E-stained histology to predict the LNM status of MIBC patients. It might be used for personalized management of MIBC patients following prospective validation in the future.

摘要

目的

基于原发性肿瘤组织开发一种深度学习(DL)模型,以预测肌肉浸润性膀胱癌(MIBC)的淋巴结转移(LNM)状态,同时验证预测的人工智能淋巴结(aiN)评分在MIBC患者中的预后价值。

方法

来自癌症基因组图谱(TCGA)的323例患者用作训练和内部验证集,使用名为UNI的视觉编码器提取图像特征。我们在评估aiN评分的预后价值的同时,研究了预测LNM状态的能力。对武汉大学人民医院(RHWU;中国武汉)的139例患者进行了外部验证。

结果

DL模型在内部验证集中预测LNM状态的受试者工作特征曲线下面积为0.79(95%置信区间[CI],0.69-0.88),在外部验证集中为0.72(95%CI,0.68-0.75)。在多变量Cox分析中,模型预测的aiN评分成为MIBC患者生存的独立预测因子,在TCGA队列中风险比为1.608(95%CI,1.128-2.291;p=0.008),在RHWU队列中为2.746(95%CI,1.486-5.076;p<0.001)。此外,aiN评分在不同亚组中均保持预后价值。

结论

在本研究中,基于DL的图像分析通过直接从苏木精和伊红染色的组织学中提取相关预后信息来预测MIBC患者的LNM状态,显示出有前景的结果。未来在前瞻性验证后,它可能用于MIBC患者的个性化管理。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验