Institute of Life Sciences , Université catholique de Louvain , Croix du Sud, 4-5, bte L7.07.06 , B-1348 Louvain-la-Neuve , Belgium.
Walloon Excellence in Life Sciences and Biotechnology (WELBIO) , 4000 Liège , Belgium.
ACS Nano. 2018 Apr 24;12(4):3609-3622. doi: 10.1021/acsnano.8b00716. Epub 2018 Apr 10.
Staphylococcus aureus can invade various types of mammalian cells, thereby enabling it to evade host immune defenses and antibiotics. The current model for cellular invasion involves the interaction between the bacterial cell surface located fibronectin (Fn)-binding proteins (FnBPA and FnBPB) and the α5β1 integrin in the host cell membrane. While it is believed that the extracellular matrix protein Fn serves as a bridging molecule between FnBPs and integrins, the fundamental forces involved are not known. Using single-cell and single-molecule experiments, we unravel the molecular forces guiding S. aureus cellular invasion, focusing on the prototypical three-component FnBPA-Fn-integrin interaction. We show that FnBPA mediates bacterial adhesion to soluble Fn via strong forces (∼1500 pN), consistent with a high-affinity tandem β-zipper, and that the FnBPA-Fn complex further binds to immobilized α5β1 integrins with a strength much higher than that of the classical Fn-integrin bond (∼100 pN). The high mechanical stability of the Fn bridge favors an invasion model in which Fn binding by FnBPA leads to the exposure of cryptic integrin-binding sites via allosteric activation, which in turn engage in a strong interaction with integrins. This activation mechanism emphasizes the importance of protein mechanobiology in regulating bacterial-host adhesion. We also find that Fn-dependent adhesion between S. aureus and endothelial cells strengthens with time, suggesting that internalization occurs within a few minutes. Collectively, our results provide a molecular foundation for the ability of FnBPA to trigger host cell invasion by S. aureus and offer promising prospects for the development of therapeutic approaches against intracellular pathogens.
金黄色葡萄球菌可以入侵各种类型的哺乳动物细胞,从而使其能够逃避宿主的免疫防御和抗生素的作用。目前,细胞入侵的模型涉及到细菌表面定位的纤维连接蛋白(Fn)结合蛋白(FnBPA 和 FnBPB)与宿主细胞膜上的α5β1 整合素之间的相互作用。尽管人们认为细胞外基质蛋白 Fn 作为 FnBPs 和整合素之间的桥接分子,但其中涉及的基本力尚不清楚。使用单细胞和单分子实验,我们揭示了指导金黄色葡萄球菌细胞入侵的分子力,重点研究了典型的三组分 FnBPA-Fn-整合素相互作用。我们表明,FnBPA 通过强大的力(约 1500 pN)介导细菌与可溶性 Fn 的粘附,这与高亲和力的串联β-拉链一致,并且 FnBPA-Fn 复合物进一步与固定化的α5β1 整合素结合,其强度远高于经典的 Fn-整合素键(约 100 pN)。Fn 桥的高机械稳定性有利于这样一种入侵模型,即 FnBPA 与 Fn 的结合通过别构激活导致隐藏的整合素结合位点暴露,进而与整合素发生强烈相互作用。这种激活机制强调了蛋白质机械生物学在调节细菌-宿主粘附中的重要性。我们还发现金黄色葡萄球菌与内皮细胞之间的 Fn 依赖性粘附随时间增强,这表明内化发生在几分钟内。总之,我们的研究结果为 FnBPA 触发金黄色葡萄球菌引起宿主细胞入侵的能力提供了分子基础,并为开发针对细胞内病原体的治疗方法提供了有希望的前景。