Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504, Coimbra, Portugal.
Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal.
Neurotox Res. 2018 Feb;33(2):388-401. doi: 10.1007/s12640-017-9805-y. Epub 2017 Sep 5.
Though glucose fluctuations have been considered as an adverse factor for the development of several diabetes-related complications, their impact in the central nervous system is still not fully elucidated. This study was conducted to evaluate the responses of neuronal cells to different glycemic exposures alongside to elucidate the role of uncoupling protein 2 (UCP2) in regulating such responses. To achieve our goals, primary cortical neurons were submitted to constant high (HG)/low (LG) or glucose level variations (GVs), and the pharmacological inhibition of UCP2 activity was performed using genipin. Results obtained show that GV decreased neuronal cells' viability, mitochondrial membrane potential, and manganese superoxide dismutase activity and increased reactive oxygen species (ROS) production. GV also caused an increase in the glutathione/glutathione disulfide ratio and in the protein expression levels of nuclear factor E2-related factor 2 (NRF2), UCP2, NADH-ubiquinone oxidoreductase chain 1 (ND1), and mitochondrially encoded cytochrome c oxidase I (MTCO1), both mitochondrial DNA encoded subunits of the electron transport chain. Contrariwise, genipin abrogated all those compensations and increased the levels of caspase 3-like activity, potentiated mitochondrial ROS levels, and the loss of neuronal synaptic integrity, decreased the protein expression levels of NRF1, and increased the protein expression levels of UCP5. Further, in the control and LG conditions, genipin increased mitochondrial ROS and the protein expression levels of UCP4, postsynaptic density protein 95 (PSD95), ND1, and MTCO1. Overall, these observations suggest that UCP2 is in the core of neuronal cell protection and/or adaptation against GV-mediated effects and that other isoforms of neuronal UCPs can be upregulated to compensate the inhibition of UCP2 activity.
尽管葡萄糖波动已被认为是多种糖尿病相关并发症发展的不利因素,但它们对中枢神经系统的影响仍未完全阐明。本研究旨在评估神经元细胞对不同血糖暴露的反应,并阐明解偶联蛋白 2 (UCP2) 在调节这些反应中的作用。为了达到我们的目标,原代皮质神经元被置于恒定的高 (HG)/低 (LG) 或葡萄糖水平变化 (GV) 下,并用京尼平抑制 UCP2 活性。结果表明,GV 降低了神经元细胞的活力、线粒体膜电位和锰超氧化物歧化酶活性,增加了活性氧 (ROS) 的产生。GV 还导致谷胱甘肽/谷胱甘肽二硫化物比值以及核因子 E2 相关因子 2 (NRF2)、UCP2、NADH-泛醌氧化还原酶链 1 (ND1) 和线粒体编码细胞色素 c 氧化酶 I (MTCO1) 的蛋白表达水平增加,这些都是电子传递链中线粒体 DNA 编码的亚单位。相反,京尼平消除了所有这些代偿作用,并增加了 caspase 3 样活性、增强了线粒体 ROS 水平以及神经元突触完整性的丧失,降低了 NRF1 的蛋白表达水平,增加了 UCP5 的蛋白表达水平。此外,在对照和 LG 条件下,京尼平增加了线粒体 ROS 和 UCP4、突触后密度蛋白 95 (PSD95)、ND1 和 MTCO1 的蛋白表达水平。总的来说,这些观察结果表明,UCP2 是神经元细胞保护和/或适应 GV 介导的作用的核心,并且其他神经元 UCP 同工型可以上调以补偿 UCP2 活性的抑制。