Suppr超能文献

电子分支:生物氧化还原化学中两电子代理的热力学和动力学。

Electron Bifurcation: Thermodynamics and Kinetics of Two-Electron Brokering in Biological Redox Chemistry.

机构信息

National Renewable Energy Laboratory , Golden, Colorado 80401, United States.

Institute of Biological Chemistry, Washington State University , Pullman, Washington 99163, United States.

出版信息

Acc Chem Res. 2017 Sep 19;50(9):2410-2417. doi: 10.1021/acs.accounts.7b00327. Epub 2017 Sep 6.

Abstract

How can proteins drive two electrons from a redox active donor onto two acceptors at very different potentials and distances? And how can this transaction be conducted without dissipating very much energy or violating the laws of thermodynamics? Nature appears to have addressed these challenges by coupling thermodynamically uphill and downhill electron transfer reactions, using two-electron donor cofactors that have very different potentials for the removal of the first and second electron. Although electron bifurcation is carried out with near perfection from the standpoint of energy conservation and electron delivery yields, it is a biological energy transduction paradigm that has only come into focus recently. This Account provides an exegesis of the biophysical principles that underpin electron bifurcation. Remarkably, bifurcating electron transfer (ET) proteins typically send one electron uphill and one electron downhill by similar energies, such that the overall reaction is spontaneous, but not profligate. Electron bifurcation in the NADH-dependent reduced ferredoxin: NADP oxidoreductase I (Nfn) is explored in detail here. Recent experimental progress in understanding the structure and function of Nfn allows us to dissect its workings in the framework of modern ET theory. The first electron that leaves the two-electron donor flavin (L-FAD) executes a positive free energy "uphill" reaction, and the departure of this electron switches on a second thermodynamically spontaneous ET reaction from the flavin along a second pathway that moves electrons in the opposite direction and at a very different potential. The singly reduced ET products formed from the bifurcating flavin are more than two nanometers distant from each other. In Nfn, the second electron to leave the flavin is much more reducing than the first: the potentials are said to be "crossed." The eventually reduced cofactors, NADH and ferredoxin in the case of Nfn, perform crucial downstream redox processes of their own. We dissect the thermodynamics and kinetics of electron bifurcation in Nfn and find that the key features of electron bifurcation are (1) spatially separated transfer pathways that diverge from a two-electron donor, (2) one thermodynamically uphill and one downhill redox pathway, with a large negative shift in the donor's reduction potential after departure of the first electron, and (3) electron tunneling and activation factors that enable bifurcation, producing a 1:1 partitioning of electrons onto the two pathways. Electron bifurcation is found in the CO reducing pathways of methanogenic archaea, in the hydrogen pathways of hydrogenases, in the nitrogen fixing pathway of Fix, and in the mitochondrial charge transfer chain of complex III, cytochrome bc. While crossed potentials may offer the biological advantage of producing tightly regulated high energy reactive species, neither kinetic nor thermodynamic considerations mandate crossed potentials to generate successful electron bifurcation. Taken together, the theoretical framework established here, focusing on the underpinning electron tunneling barriers and activation free energies, explains the logic of electron bifurcation that enables energy conversion and conservation in Nfn, points toward bioinspired schemes to execute multielectron redox chemistry, and establishes a roadmap for examining novel electron bifurcation networks in nature.

摘要

蛋白质如何能够将两个电子从氧化还原活性供体转移到两个具有非常不同电势和距离的受体上?这种转移如何在不消耗大量能量或违反热力学定律的情况下进行?大自然似乎通过耦合热力学上的上坡和下坡电子转移反应来解决这些挑战,使用具有非常不同的去除第一个和第二个电子的电势的双电子供体辅因子。尽管从能量守恒和电子传递产率的角度来看,电子分叉的执行近乎完美,但它是一种生物能量转导范例,直到最近才引起关注。本说明提供了支持电子分叉的生物物理原理的注释。值得注意的是,分叉电子转移 (ET) 蛋白通常通过相似的能量将一个电子向上和一个电子向下发送,使得整体反应是自发的,但不是挥霍的。这里详细探讨了依赖 NADH 的还原铁氧还蛋白:NADP 氧化还原酶 I (Nfn) 中的分叉电子转移。最近在理解 Nfn 的结构和功能方面的实验进展使我们能够在现代 ET 理论的框架内剖析其工作原理。离开双电子供体黄素 (L-FAD) 的第一个电子执行一个正自由能“上坡”反应,并且该电子的离开使黄素沿着第二个途径的第二个热力学上自发的 ET 反应打开,该途径将电子沿相反方向移动并在非常不同的电势下移动。由分叉黄素形成的单还原 ET 产物彼此之间的距离超过 2 纳米。在 Nfn 中,离开黄素的第二个电子比第一个电子更具还原能力:据说电位是“交叉”的。最终还原的辅因子,在 Nfn 的情况下是 NADH 和铁氧还蛋白,本身执行关键的下游氧化还原过程。我们剖析了 Nfn 中电子分叉的热力学和动力学,并发现电子分叉的关键特征是 (1) 从双电子供体发散的空间分离的转移途径,(2) 一个热力学上坡和一个下坡氧化还原途径,在第一个电子离开后供体的还原电位有很大的负移,以及 (3) 使分叉发生的电子隧道和激活因子,产生电子在两条途径上 1:1 分配。电子分叉存在于产甲烷古菌的 CO 还原途径中、氢化酶的氢途径中、Fix 的固氮途径中和线粒体复合 III、细胞色素 bc 的电荷转移链中。虽然交叉电位可能提供产生紧密调节的高能反应性物质的生物学优势,但无论是动力学还是热力学考虑都不要求交叉电位来产生成功的电子分叉。总之,这里建立的理论框架侧重于基础电子隧道势垒和激活自由能,解释了在 Nfn 中实现能量转换和守恒的电子分叉逻辑,为执行多电子氧化还原化学的仿生方案指明了方向,并为研究自然界中新型电子分叉网络建立了路线图。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验