International Joint Centre for Biomedical Innovations, School of Life Sciences, Henan University, Jin Ming Avenue, Kaifeng, Henan 475004, China.
Nanoscale. 2017 Sep 21;9(36):13683-13692. doi: 10.1039/c7nr03557h.
There is considerable interest in developing diagnostic nanotools for early detection and delivery of various therapeutic agents for treatment of neurodegenerative diseases. However, a key challenge remains in the selection of suitable surfaces to overcome the nano-bio interface issue, namely that many nanoparticle surfaces demonstrate instability when administered into biological environments and show substantial cytotoxicity to the central nervous system. In this study, we fabricated an evaluation platform for bio-nano surface selection based on the combination of upconversion nanoparticles (UCNPs), cultured neural cells and zebra fish, and systemically demonstrated how it can evaluate the suitability of nanoparticle surfaces for applications in the central nervous system. Firstly, we fabricated highly lanthanide-doped UCNPs, which generate the strongest tissue penetrable emission at 800 nm. We then functionalized these UCNPs with four popular surfaces for evaluation. Next, we systematically evaluated the spectral emission properties, biophysical stability, cytotoxicity and cell uptake capability of these surface-functionalized UCNPs in biological solutions or with cultured NSC-34 cells. Through these studies, PEG-COOH proved to be the superior surface modification. Accordingly, we further confirmed the bioavailability of unmodified and surface modified UCNPs in the spinal cord of living zebrafish. As predicted, PEG-UCNPs displayed excellent dispersal and uptake into spinal motor neurons in living zebrafish. Collectively, this study developed a versatile upconversion platform for systematic evaluation of nanoparticle surfaces, which can provide valuable information via systemic surface evaluation in vitro and in vivo for future construction of multifunctional nanosystems for theranostic applications in neurodegenerative diseases.
人们对于开发用于神经退行性疾病的早期诊断和递药的诊断性纳米工具有着浓厚的兴趣。然而,选择合适的表面来克服纳米-生物界面问题仍然是一个关键的挑战,即许多纳米颗粒表面在进入生物环境时表现出不稳定性,并对中枢神经系统表现出显著的细胞毒性。在这项研究中,我们基于上转换纳米颗粒(UCNPs)、培养的神经细胞和斑马鱼的组合,构建了一个用于生物-纳米表面选择的评估平台,并系统地展示了它如何评估纳米颗粒表面在中枢神经系统应用中的适用性。首先,我们制备了高度镧系掺杂的 UCNPs,它们在 800nm 处产生最强的组织穿透发射。然后,我们用四种常用的表面对这些 UCNPs 进行功能化。接下来,我们系统地评估了这些表面功能化的 UCNPs 在生物溶液或与培养的 NSC-34 细胞中的光谱发射特性、生物物理稳定性、细胞毒性和细胞摄取能力。通过这些研究,PEG-COOH 被证明是优越的表面修饰。相应地,我们进一步证实了未经修饰和表面修饰的 UCNPs 在活体斑马鱼脊髓中的生物利用度。正如预测的那样,PEG-UCNPs 在活体斑马鱼的脊髓运动神经元中表现出良好的分散和摄取。总之,本研究开发了一种通用的上转换平台,用于系统地评估纳米颗粒表面,通过体外和体内的系统表面评估,可为未来构建用于神经退行性疾病治疗应用的多功能纳米系统提供有价值的信息。