Suppr超能文献

用于在癌细胞群体中生成肿瘤内异质性模式的模拟框架。

Simulation framework for generating intratumor heterogeneity patterns in a cancer cell population.

作者信息

Iwasaki Watal M, Innan Hideki

机构信息

Department of Evolutionary Studies of Biosystems, SOKENDAI (Graduate University for Advanced Studies), Shonan Village, Hayama, 240-0193, Japan.

出版信息

PLoS One. 2017 Sep 6;12(9):e0184229. doi: 10.1371/journal.pone.0184229. eCollection 2017.

Abstract

As cancer cell populations evolve, they accumulate a number of somatic mutations, resulting in heterogeneous subclones in the final tumor. Understanding the mechanisms that produce intratumor heterogeneity is important for selecting the best treatment. Although some studies have involved intratumor heterogeneity simulations, their model settings differed substantially. Thus, only limited conditions were explored in each. Herein, we developed a general framework for simulating intratumor heterogeneity patterns and a simulator (tumopp). Tumopp offers many setting options so that simulations can be carried out under various settings. Setting options include how the cell division rate is determined, how daughter cells are placed, and how driver mutations are treated. Furthermore, to account for the cell cycle, we introduced a gamma function for the waiting time involved in cell division. Tumopp also allows simulations in a hexagonal lattice, in addition to a regular lattice that has been used in previous simulation studies. A hexagonal lattice produces a more biologically reasonable space than a regular lattice. Using tumopp, we investigated how model settings affect the growth curve and intratumor heterogeneity pattern. It was found that, even under neutrality (with no driver mutations), tumopp produced dramatically variable patterns of intratumor heterogeneity and tumor morphology, from tumors in which cells with different genetic background are well intermixed to irregular shapes of tumors with a cluster of closely related cells. This result suggests a caveat in analyzing intratumor heterogeneity with simulations with limited settings, and tumopp will be useful to explore intratumor heterogeneity patterns in various conditions.

摘要

随着癌细胞群体的进化,它们会积累大量体细胞突变,导致最终肿瘤中出现异质性亚克隆。了解产生肿瘤内异质性的机制对于选择最佳治疗方法至关重要。尽管一些研究涉及肿瘤内异质性模拟,但其模型设置差异很大。因此,每项研究探索的条件都很有限。在此,我们开发了一个用于模拟肿瘤内异质性模式的通用框架和一个模拟器(tumopp)。Tumopp提供了许多设置选项,以便能够在各种设置下进行模拟。设置选项包括细胞分裂速率如何确定、子细胞如何放置以及驱动突变如何处理。此外,为了考虑细胞周期,我们为细胞分裂所涉及的等待时间引入了一个伽马函数。除了先前模拟研究中使用的规则晶格外,Tumopp还允许在六边形晶格中进行模拟。六边形晶格比规则晶格产生更符合生物学原理的空间。使用tumopp,我们研究了模型设置如何影响生长曲线和肿瘤内异质性模式。结果发现,即使在中性条件下(无驱动突变),tumopp也会产生显著不同的肿瘤内异质性模式和肿瘤形态,从具有不同遗传背景的细胞充分混合的肿瘤到具有一群密切相关细胞的不规则形状肿瘤。这一结果表明在使用有限设置的模拟分析肿瘤内异质性时需谨慎,而tumopp将有助于探索各种条件下的肿瘤内异质性模式。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5cf/5587296/94e31f0bc0a8/pone.0184229.g001.jpg

相似文献

2
Intratumor heterogeneity in epigenetic patterns.肿瘤内表观遗传模式的异质性。
Semin Cancer Biol. 2018 Aug;51:12-21. doi: 10.1016/j.semcancer.2018.01.010. Epub 2018 Jan 31.
3
Deciphering intratumor heterogeneity using cancer genome analysis.利用癌症基因组分析解读肿瘤内异质性。
Hum Genet. 2016 Jun;135(6):635-42. doi: 10.1007/s00439-016-1670-x. Epub 2016 Apr 28.
4
The challenges of tumor genetic diversity.肿瘤基因多样性的挑战。
Cancer. 2017 May 15;123(6):917-927. doi: 10.1002/cncr.30430. Epub 2016 Nov 8.
8
Intratumor heterogeneity: nature and biological significance.肿瘤内异质性:本质与生物学意义
Biochemistry (Mosc). 2013 Nov;78(11):1201-15. doi: 10.1134/S0006297913110011.
9
Evolutionary dynamics of intratumor heterogeneity.肿瘤内异质性的进化动态。
PLoS One. 2011 Mar 30;6(3):e17866. doi: 10.1371/journal.pone.0017866.

引用本文的文献

5
The Role of Research in Developing Nanoparticle-Based Therapeutics.研究在基于纳米颗粒的治疗方法开发中的作用。
Front Digit Health. 2022 Mar 16;4:838590. doi: 10.3389/fdgth.2022.838590. eCollection 2022.

本文引用的文献

2
The Greater Genomic Landscape: The Heterogeneous Evolution of Cancer.更大的基因组图景:癌症的异质性进化
Cancer Res. 2016 Oct 1;76(19):5605-5609. doi: 10.1158/0008-5472.CAN-16-0585. Epub 2016 Aug 22.
5
Computational Cancer Biology: An Evolutionary Perspective.计算癌症生物学:进化视角
PLoS Comput Biol. 2016 Feb 4;12(2):e1004717. doi: 10.1371/journal.pcbi.1004717. eCollection 2016 Feb.
7
Single-Cell Analysis in Cancer Genomics.癌症基因组学中的单细胞分析
Trends Genet. 2015 Oct;31(10):576-586. doi: 10.1016/j.tig.2015.07.003.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验