Suppr超能文献

从批量测序数据中推断克隆进化关系和突变顺序的计算方法的优势和陷阱。

Power and pitfalls of computational methods for inferring clone phylogenies and mutation orders from bulk sequencing data.

机构信息

Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA, 19122, USA.

Department of Biology, Temple University, Philadelphia, PA, 19122, USA.

出版信息

Sci Rep. 2020 Feb 26;10(1):3498. doi: 10.1038/s41598-020-59006-2.

Abstract

Tumors harbor extensive genetic heterogeneity in the form of distinct clone genotypes that arise over time and across different tissues and regions in cancer. Many computational methods produce clone phylogenies from population bulk sequencing data collected from multiple tumor samples from a patient. These clone phylogenies are used to infer mutation order and clone origins during tumor progression, rendering the selection of the appropriate clonal deconvolution method critical. Surprisingly, absolute and relative accuracies of these methods in correctly inferring clone phylogenies are yet to consistently assessed. Therefore, we evaluated the performance of seven computational methods. The accuracy of the reconstructed mutation order and inferred clone groupings varied extensively among methods. All the tested methods showed limited ability to identify ancestral clone sequences present in tumor samples correctly. The presence of copy number alterations, the occurrence of multiple seeding events among tumor sites during metastatic tumor evolution, and extensive intermixture of cancer cells among tumors hindered the detection of clones and the inference of clone phylogenies for all methods tested. Overall, CloneFinder, MACHINA, and LICHeE showed the highest overall accuracy, but none of the methods performed well for all simulated datasets. So, we present guidelines for selecting methods for data analysis.

摘要

肿瘤在不同的时间和不同的组织和区域中以不同克隆基因型的形式存在广泛的遗传异质性。许多计算方法从患者的多个肿瘤样本中收集的群体批量测序数据中生成克隆系统发育。这些克隆系统发育用于推断肿瘤进展过程中的突变顺序和克隆起源,因此选择适当的克隆去卷积方法至关重要。令人惊讶的是,这些方法正确推断克隆系统发育的绝对和相对准确性尚未得到一致评估。因此,我们评估了七种计算方法的性能。重建的突变顺序和推断的克隆分组的准确性在方法之间差异很大。所有测试的方法在正确识别肿瘤样本中存在的祖先克隆序列方面都表现出有限的能力。拷贝数改变的存在、转移性肿瘤进化过程中肿瘤部位之间多个播种事件的发生以及肿瘤之间癌细胞的广泛混合,阻碍了所有测试方法的克隆检测和克隆系统发育的推断。总体而言,CloneFinder、MACHINA 和 LICHeE 显示出最高的总体准确性,但没有一种方法对所有模拟数据集都表现良好。因此,我们为数据分析方法的选择提供了指导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/785e/7044161/15d59c0a84c7/41598_2020_59006_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验