González-Sierra Nancy Elizabeth, Gómez-Pavón Luz Del Carmen, Pérez-Sánchez Gerardo Francisco, Luis-Ramos Arnulfo, Zaca-Morán Plácido, Muñoz-Pacheco Jesús Manuel, Chávez-Ramírez Francisco
Grupo de Sistemas Fotónicos y Nanoóptica, Facultad de Ciencias de la Electrónica, Benemérita Universidad Autónoma de Puebla, CP 72570 Puebla, Pue., Mexico.
Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, CP 72050 Puebla, Pue., Mexico.
Sensors (Basel). 2017 Sep 6;17(9):2039. doi: 10.3390/s17092039.
A comparative study on the sensing properties of a tapered optical fiber pristine and functionalized with the palladium nanoparticles to hydrogen and volatile organic compounds (VOCs), is presented. The sensor response and, response/recovery times were extracted from the measurements of the transient response of the device. The tapered optical fiber sensor was fabricated using a single-mode optical fiber by the flame-brushing technique. Functionalization of the optical fiber was performed using an aqueous solution of palladium chloride by drop-casting technique assisted for laser radiation. The detection principle of the sensor is based on the changes in the optical properties of palladium nanoparticles when exposed to reducing gases, which causes a variation in the absorption of evanescent waves. A continuous wave laser diode operating at 1550 nm is used for the sensor characterization. The sensor functionalized with palladium nanoparticles by this technique is viable for the sensing of hydrogen and VOCs, since it shows an enhancement in sensor response and response time compared to the sensor based on the pristine optical microfiber. The results show that the fabricated sensor is competitive with other fiber optic sensors functionalized with palladium nanoparticles to the hydrogen.
本文介绍了对原始锥形光纤以及用钯纳米颗粒功能化的锥形光纤对氢气和挥发性有机化合物(VOCs)传感特性的比较研究。传感器响应以及响应/恢复时间是从该装置瞬态响应的测量中提取的。锥形光纤传感器是使用单模光纤通过火焰刷涂技术制造的。光纤的功能化是通过滴铸技术并借助激光辐射,使用氯化钯水溶液来进行的。该传感器的检测原理基于钯纳米颗粒在暴露于还原性气体时光学性质的变化,这会导致倏逝波吸收的变化。使用工作在1550nm的连续波激光二极管对传感器进行表征。通过该技术用钯纳米颗粒功能化的传感器对于氢气和VOCs的传感是可行的,因为与基于原始光学微纤维的传感器相比,它显示出传感器响应和响应时间的增强。结果表明,所制造的传感器与其他用钯纳米颗粒功能化的用于氢气传感的光纤传感器具有竞争力。